-
Notifications
You must be signed in to change notification settings - Fork 2
/
cis.ml
394 lines (347 loc) · 12.3 KB
/
cis.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
(**
Cis : compact integer sets
This module implements compact integer sets, represented as a (custom) list
of integer intervals. Usual set operations are provided.
The advantage compared to ordered lists is that the actual size may be smaller
than the cardinal of a set when many elements are contiguous. Most set operations
are linear w.r.t. the size, not the cardinal.
Author: Sébastien Ferré <[email protected]>
License: LGPL
*)
(* for test
#load "nums.cma"
#load "str.cma"
#load "unix.cma"
#load "common.cmo"
#load "lSet.cmo"
*)
(* copied from module Common *)
let fold_for : (int -> 'a -> 'a) -> int -> int -> 'a -> 'a =
fun f a b e ->
let res = ref e in
for x = a to b do
res := f x !res
done;
!res
let fold_for_down : (int -> 'a -> 'a) -> int -> int -> 'a -> 'a =
fun f a b e ->
let res = ref e in
for x = a downto b do
res := f x !res
done;
!res
(* end of copy *)
type elt = int
type t = Nil | Single of int * t | Interv of int * int * t
(** integers in decreasing order *)
let compare x y = Pervasives.compare y x
let max_elt : t -> int =
function
| Nil -> raise (Invalid_argument "Cis.max_elt: set is empty")
| Single (x,_) -> x
| Interv (xmax,_,_) -> xmax
let rec min_elt : t -> int =
function
| Nil -> raise (Invalid_argument "Cis.max: set is empty")
| Single (x,Nil) -> x
| Interv (_,xmin,Nil) -> xmin
| Single (_,l) -> min_elt l
| Interv (_,_,l) -> min_elt l
let step : t -> nil:(unit -> 'a) -> single:(int -> t -> 'a) -> interv:(int * int -> t -> 'a) -> 'a =
fun l ~nil ~single ~interv ->
match l with
| Nil -> nil ()
| Single (x,l') -> single x l'
| Interv (x,y,l') -> interv (x,y) l';;
let cons_single : int -> t -> t =
fun x l ->
step l
~nil:(fun () -> Single (x,Nil))
~single:(fun x' l' -> (* assert (x > x');*) if x=x'+1 then Interv (x,x',l') else Single (x,l))
~interv:(fun (xmax',xmin') l' -> (* assert (x > xmax');*) if x=xmax'+1 then Interv (x,xmin',l') else Single (x,l));;
let cons_interv : int * int -> t -> t =
fun (xmax,xmin) l ->
if xmax > xmin then
step l
~nil:(fun () -> Interv (xmax, xmin, Nil))
~single:(fun x' l' -> (* assert (xmin > x');*) if xmin=x'+1 then Interv (xmax,x',l') else Interv (xmax,xmin,l))
~interv:(fun (xmax',xmin') l' -> (* assert (xmin > xmax');*) if xmin=xmax'+1 then Interv (xmax, xmin', l') else Interv (xmax,xmin,l))
else if xmin=xmax then (* inlining of 'cons_single xmin l' *)
step l
~nil:(fun () -> Single (xmin,Nil))
~single:(fun x' l' -> (* assert (xmin > x');*) if xmin=x'+1 then Interv (xmin,x',l') else Single (xmin,l))
~interv:(fun (xmax',xmin') l' -> (* assert (xmin > xmax');*) if xmin=xmax'+1 then Interv (xmin,xmin',l') else Single (xmin,l))
else (* xmin > xmax *) l;;
let rec append : t -> t -> t = (* assumes (min_elt l1) > (max_elt l2) *)
fun l1 l2 ->
if l2 = Nil
then l1
else
let m = max_elt l2 in
append_aux l1 (m,l2)
and append_aux l1 (m,l2) =
match l1 with
| Nil -> l2
| Single (x,Nil) -> if x=m+1 then cons_single x l2 else Single (x,l2)
| Interv (xmax,xmin,Nil) -> if xmin=m+1 then cons_interv (xmax,xmin) l2 else Interv (xmax,xmin,l2)
| Single (x,l') -> Single (x, append_aux l' (m,l2))
| Interv (xmax,xmin,l') -> Interv (xmax, xmin, append_aux l' (m,l2))
(* -------------------------- *)
let empty : t = Nil;;
let is_empty : t -> bool =
fun l -> l = Nil
let rec cardinal : t -> int =
fun l -> cardinal_aux 0 l
and cardinal_aux accu l =
step l
~nil:(fun () -> accu)
~single:(fun x l' -> cardinal_aux (accu+1) l')
~interv:(fun (xmax,xmin) l' -> cardinal_aux (accu+xmax-xmin+1) l');;
let rec mem : elt -> t -> bool =
fun e l ->
step l
~nil:(fun () -> false)
~single:(fun x l_tail ->
e=x or (pred x > e & mem e l_tail))
~interv:(fun (xmax,xmin) l_tail ->
(xmax >= e & e >= xmin) or (pred xmin > e & mem e l_tail));;
let singleton : elt -> t =
fun x -> Single (x,Nil)
let rec add : int -> t -> t =
fun x l ->
step l
~nil:(fun () -> cons_single x l)
~single:(fun x' l' ->
if x > x' then cons_single x l
else if x = x' then l
else (* x' > x *) cons_single x' (add x l'))
~interv:(fun (xmax',xmin') l' ->
if x > xmax' then cons_single x l
else if xmax' >= x & x >= xmin' then l
else (* xmin' > x *) cons_interv (xmax',xmin') (add x l'))
let rec remove : int -> t -> t =
fun x l ->
step l
~nil:(fun () -> empty)
~single:(fun x' l' ->
if x > x' then l
else if x = x' then l'
else (* x' > x *) cons_single x' (remove x l'))
~interv:(fun (xmax',xmin') l' ->
if x > xmax' then l
else if xmax' >= x & x >= xmin' then cons_interv (xmax',x+1) (cons_interv (x-1,xmin') l')
else cons_interv (xmax',xmin') (remove x l'));;
let of_list : int list -> t =
fun l ->
List.fold_left (fun res x -> add x res) empty l;;
let rec union : t -> t -> t =
fun l1 l2 ->
step l1
~nil:(fun () -> l2)
~single:(fun x1 l1_tail ->
step l2
~nil:(fun () -> l1)
~single:(fun x2 l2_tail ->
if x1 > 1+x2 then cons_single x1 (union l1_tail l2)
else if x2 > 1+x1 then cons_single x2 (union l1 l2_tail)
else if x1 = 1+x2 then cons_interv (x1,x2) (union l1_tail l2_tail)
else if x2 = 1+x1 then cons_interv (x2,x1) (union l1_tail l2_tail)
else (* x1=x2 *) cons_single x1 (union l1_tail l2_tail))
~interv:(fun (xmax2,xmin2) l2_tail ->
if x1 > xmax2 then cons_single x1 (union l1_tail l2)
else if xmin2 > 1+x1 then cons_interv (xmax2,xmin2) (union l1 l2_tail)
else if xmin2 = 1+x1 then cons_interv (xmax2,x1) (union l1_tail l2_tail)
else (* xmax2 >= x1 & x1 >= xmin2 *) cons_interv (xmax2,x1) (union l1_tail (cons_interv (x1-1,xmin2) l2_tail))))
~interv:(fun (xmax1,xmin1) l1_tail ->
step l2
~nil:(fun () -> l1)
~single:(fun x2 l2_tail ->
if x2 > xmax1 then cons_single x2 (union l1 l2_tail)
else if xmin1 > 1+x2 then cons_interv (xmax1,xmin1) (union l1_tail l2)
else if xmin1 = 1+x2 then cons_interv (xmax1,x2) (union l1_tail l2_tail)
else (* xmax1 >= x2 & x2 >= xmin1 *) cons_interv (xmax1,x2) (union (cons_interv (x2-1,xmin1) l1_tail) l2_tail))
~interv:(fun (xmax2,xmin2) l2_tail ->
if xmin2 > xmax1 then cons_interv (xmax2,xmin2) (union l1 l2_tail)
else if xmin1 > xmax2 then cons_interv (xmax1,xmin1) (union l1_tail l2)
else
cons_interv
(max xmax1 xmax2, max xmin1 xmin2)
(if xmin1 = xmin2 then union l1_tail l2_tail
else if xmin1 > xmin2 then union l1_tail (cons_interv (xmin1-1,xmin2) l2_tail)
else (* xmin2 > xmin1 *) union (cons_interv (xmin2-1,xmin1) l1_tail) l2_tail)));;
let rec inter : t -> t -> t =
fun l1 l2 ->
step l1
~nil:(fun () -> empty)
~single:(fun x1 l1_tail ->
step l2
~nil:(fun () -> empty)
~single:(fun x2 l2_tail ->
if x1 > 1+x2 then inter l1_tail l2
else if x2 > 1+x1 then inter l1 l2_tail
else if x1 = 1+x2 then inter l1_tail l2_tail
else if x2 = 1+x1 then inter l1_tail l2_tail
else (* x1=x2 *) cons_single x1 (inter l1_tail l2_tail))
~interv:(fun (xmax2,xmin2) l2_tail ->
if x1 > xmax2 then inter l1_tail l2
else if xmin2 > x1 then inter l1 l2_tail
else (* xmax2 >= x1 & x1 >= xmin2 *) cons_single x1 (inter l1_tail l2)))
~interv:(fun (xmax1,xmin1) l1_tail ->
step l2
~nil:(fun () -> empty)
~single:(fun x2 l2_tail ->
if x2 > xmax1 then inter l1 l2_tail
else if xmin1 > x2 then inter l1_tail l2
else (* xmax1 >= x2 & x2 >= xmin1 *) cons_single x2 (inter l1 l2_tail))
~interv:(fun (xmax2,xmin2) l2_tail ->
if xmin2 > xmax1 then inter l1 l2_tail
else if xmin1 > xmax2 then inter l1_tail l2
else
cons_interv
(min xmax1 xmax2, max xmin1 xmin2)
(if xmin1 >= xmin2 then inter l1_tail l2 else inter l1 l2_tail)));;
let rec diff : t -> t -> t =
fun l1 l2 ->
step l1
~nil:(fun () -> empty)
~single:(fun x1 l1_tail ->
step l2
~nil:(fun () -> l1)
~single:(fun x2 l2_tail ->
if x1 > x2 then cons_single x1 (diff l1_tail l2)
else if x2 > x1 then diff l1 l2_tail
else (* x1=x2 *) diff l1_tail l2_tail)
~interv:(fun (xmax2,xmin2) l2_tail ->
if x1 > xmax2 then cons_single x1 (diff l1_tail l2)
else if xmin2 > x1 then diff l1 l2_tail
else (* xmax2 >= x1 & x1 >= xmin2 *) diff l1_tail l2))
~interv:(fun (xmax1,xmin1) l1_tail ->
step l2
~nil:(fun () -> l1)
~single:(fun x2 l2_tail ->
if x2 > xmax1 then diff l1 l2_tail
else if xmin1 > x2 then cons_interv (xmax1,xmin1) (diff l1_tail l2)
else (* xmax1 >= x2 & x2 >= xmin1 *) cons_interv (xmax1,x2+1) (diff (cons_interv (x2-1,xmin1) l1_tail) l2_tail))
~interv:(fun (xmax2,xmin2) l2_tail ->
if xmin2 > xmax1 then diff l1 l2_tail
else if xmin1 > xmax2 then cons_interv (xmax1,xmin1) (diff l1_tail l2)
else
cons_interv
(xmax1,xmax2+1)
(if xmin1 >= xmin2
then diff l1_tail l2
else diff (cons_interv (xmin2-1,xmin1) l1_tail) l2_tail)));;
let rec subset : t -> t -> bool =
fun l1 l2 ->
step l1
~nil:(fun () -> true)
~single:(fun x1 l1_tail ->
step l2
~nil:(fun () -> false)
~single:(fun x2 l2_tail ->
if x1 > x2 then false
else if x2 > x1 then subset l1 l2_tail
else (* x1=x2 *) subset l1_tail l2_tail)
~interv:(fun (xmax2,xmin2) l2_tail ->
if x1 > xmax2 then false
else if xmin2 > x1 then subset l1 l2_tail
else (* xmax2 >= x1 & x1 >= xmin2 *) subset l1_tail l2))
~interv:(fun (xmax1,xmin1) l1_tail ->
step l2
~nil:(fun () -> false)
~single:(fun x2 l2_tail ->
if x2 > xmax1 then subset l1 l2_tail
else if xmin1 > x2 then false
else (* xmax1 >= x2 & x2 >= xmin1 *) false)
~interv:(fun (xmax2,xmin2) l2_tail ->
if xmin2 > xmax1 then subset l1 l2_tail
else if xmin1 > xmax2 then false
else xmax2 >= xmax1 & xmin1 >= xmin2 & subset l1_tail l2));;
let equal = (=)
let rec iter : (elt -> unit) -> t -> unit =
fun proc l ->
step l
~nil:(fun () -> ())
~single:(fun x l_tail -> proc x; iter proc l_tail)
~interv:(fun (xmax,xmin) l_tail ->
for x = xmax downto xmin do proc x done;
iter proc l_tail);;
let rec fold_left : ('a -> elt -> 'a) -> 'a -> t -> 'a =
fun f e l ->
step l
~nil:(fun () -> e)
~single:(fun x l_tail ->
fold_left f (f e x) l_tail)
~interv:(fun (xmax,xmin) l_tail ->
fold_left f (fold_for_down (fun x res -> f res x) xmax xmin e) l_tail);;
let rec fold_right : (elt -> 'a -> 'a) -> t -> 'a -> 'a =
fun f l e ->
step l
~nil:(fun () -> e)
~single:(fun x l_tail ->
f x (fold_right f l_tail e))
~interv:(fun (xmax,xmin) l_tail ->
fold_for (fun x res -> f x res) xmin xmax (fold_right f l_tail e));;
let rec elements : t -> elt list =
fun l ->
List.rev (fold_left (fun res x -> x::res) [] l);;
(* test section *)
(*
module OrdInt =
struct
type t = int
let compare = compare
let succ = succ
let pred = pred
let size x y = y - x + 1
end
module OSet = Set.Make(OrdInt)
let set_of_list l =
List.fold_left (fun res x -> OSet.add x res) OSet.empty l;;
let rec to_lset : t -> int LSet.t =
fun l ->
fold (fun res x -> LSet.add x res) (LSet.empty ()) l
let print_lset l =
List.iter (fun x -> print_int x; print_string " ") l;
print_newline ()
let print_prof s =
try
let n, t, m = Hashtbl.find Common.tbl_prof s in
print_int n; print_string "\t";
print_float t; print_string "\t";
print_float m; print_string "\n"
with _ -> print_endline (s ^ " cannot be found in profiling")
let rec random_list range =
function
| 0 -> []
| len ->
let x = 1 + Random.int range in
x::random_list range (len-1)
let rec test range len1 len2 n =
Hashtbl.clear Common.tbl_prof;
for i = 1 to n do
let l1 = random_list range len1 in
let ls1 = LSet.of_list l1 in
(* let os1 = set_of_list l1 in*)
let ds1 = of_list l1 in
let l2 = random_list range len2 in
let ls2 = LSet.of_list l2 in
(* let os2 = set_of_list l2 in*)
let ds2 = of_list l2 in
let ls = Common.prof "lset" (fun () -> LSet.contains ls2 ls1) in
(* let os = Common.prof "oset" (fun () -> OSet.union os1 os2) in*)
let ds = Common.prof "cis" (fun () -> subset ds1 ds2) in
if (*to_lset*) ds <> ls
then begin
print_lset ls1;
print_lset ls2;
(*
print_lset ls;
print_lset (to_lset ds);
*)
raise Not_found end
done;
print_prof "lset";
(* print_prof "oset";*)
print_prof "cis"
*)