table.go主要实现了p2p的Kademlia协议。
Kademlia协议(以下简称Kad) 是美国纽约大学的PetarP. Maymounkov和David Mazieres. 在2002年发布的一项研究结果《Kademlia: A peerto -peer information system based on the XOR metric》。 简单的说, Kad 是一种分布式哈希表( DHT) 技术, 不过和其他 DHT 实现技术比较,如 Chord、 CAN、 Pastry 等, Kad 通过独特的以异或算法( XOR)为距离度量基础,建立了一种 全新的 DHT 拓扑结构,相比于其他算法,大大提高了路由查询速度。
const (
alpha = 3 // Kademlia concurrency factor
bucketSize = 16 // Kademlia bucket size
hashBits = len(common.Hash{}) * 8
nBuckets = hashBits + 1 // Number of buckets
maxBondingPingPongs = 16
maxFindnodeFailures = 5
autoRefreshInterval = 1 * time.Hour
seedCount = 30
seedMaxAge = 5 * 24 * time.Hour
)
type Table struct {
mutex sync.Mutex // protects buckets, their content, and nursery
buckets [nBuckets]*bucket // index of known nodes by distance
nursery []*Node // bootstrap nodes
db *nodeDB // database of known nodes
refreshReq chan chan struct{}
closeReq chan struct{}
closed chan struct{}
bondmu sync.Mutex
bonding map[NodeID]*bondproc
bondslots chan struct{} // limits total number of active bonding processes
nodeAddedHook func(*Node) // for testing
net transport
self *Node // metadata of the local node
}
func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr, nodeDBPath string) (*Table, error) {
// If no node database was given, use an in-memory one
//这个在之前的database.go里面有介绍。 打开leveldb。如果path为空。那么打开一个基于内存的db
db, err := newNodeDB(nodeDBPath, Version, ourID)
if err != nil {
return nil, err
}
tab := &Table{
net: t,
db: db,
self: NewNode(ourID, ourAddr.IP, uint16(ourAddr.Port), uint16(ourAddr.Port)),
bonding: make(map[NodeID]*bondproc),
bondslots: make(chan struct{}, maxBondingPingPongs),
refreshReq: make(chan chan struct{}),
closeReq: make(chan struct{}),
closed: make(chan struct{}),
}
for i := 0; i < cap(tab.bondslots); i++ {
tab.bondslots <- struct{}{}
}
for i := range tab.buckets {
tab.buckets[i] = new(bucket)
}
go tab.refreshLoop()
return tab, nil
}
上面的初始化启动了一个goroutine refreshLoop(),这个函数主要完成以下的工作。
- 每一个小时进行一次刷新工作(autoRefreshInterval)
- 如果接收到refreshReq请求。那么进行刷新工作。
- 如果接收到关闭消息。那么进行关闭。
所以函数主要的工作就是启动刷新工作。doRefresh
// refreshLoop schedules doRefresh runs and coordinates shutdown.
func (tab *Table) refreshLoop() {
var (
timer = time.NewTicker(autoRefreshInterval)
waiting []chan struct{} // accumulates waiting callers while doRefresh runs
done chan struct{} // where doRefresh reports completion
)
loop:
for {
select {
case <-timer.C:
if done == nil {
done = make(chan struct{})
go tab.doRefresh(done)
}
case req := <-tab.refreshReq:
waiting = append(waiting, req)
if done == nil {
done = make(chan struct{})
go tab.doRefresh(done)
}
case <-done:
for _, ch := range waiting {
close(ch)
}
waiting = nil
done = nil
case <-tab.closeReq:
break loop
}
}
if tab.net != nil {
tab.net.close()
}
if done != nil {
<-done
}
for _, ch := range waiting {
close(ch)
}
tab.db.close()
close(tab.closed)
}
doRefresh函数
// doRefresh performs a lookup for a random target to keep buckets
// full. seed nodes are inserted if the table is empty (initial
// bootstrap or discarded faulty peers).
// doRefresh 随机查找一个目标,以便保持buckets是满的。如果table是空的,那么种子节点会插入。 (比如最开始的启动或者是删除错误的节点之后)
func (tab *Table) doRefresh(done chan struct{}) {
defer close(done)
// The Kademlia paper specifies that the bucket refresh should
// perform a lookup in the least recently used bucket. We cannot
// adhere to this because the findnode target is a 512bit value
// (not hash-sized) and it is not easily possible to generate a
// sha3 preimage that falls into a chosen bucket.
// We perform a lookup with a random target instead.
//这里暂时没看懂
var target NodeID
rand.Read(target[:])
result := tab.lookup(target, false) //lookup是查找距离target最近的k个节点
if len(result) > 0 { //如果结果不为0 说明表不是空的,那么直接返回。
return
}
// The table is empty. Load nodes from the database and insert
// them. This should yield a few previously seen nodes that are
// (hopefully) still alive.
//querySeeds函数在database.go章节有介绍,从数据库里面随机的查找可用的种子节点。
//在最开始启动的时候数据库是空白的。也就是最开始的时候这个seeds返回的是空的。
seeds := tab.db.querySeeds(seedCount, seedMaxAge)
//调用bondall函数。会尝试联系这些节点,并插入到表中。
//tab.nursery是在命令行中指定的种子节点。
//最开始启动的时候。 tab.nursery的值是内置在代码里面的。 这里是有值的。
//C:\GOPATH\src\github.com\ethereum\go-ethereum\mobile\params.go
//这里面写死了值。 这个值是通过SetFallbackNodes方法写入的。 这个方法后续会分析。
//这里会进行双向的pingpong交流。 然后把结果存储在数据库。
seeds = tab.bondall(append(seeds, tab.nursery...))
if len(seeds) == 0 { //没有种子节点被发现, 可能需要等待下一次刷新。
log.Debug("No discv4 seed nodes found")
}
for _, n := range seeds {
age := log.Lazy{Fn: func() time.Duration { return time.Since(tab.db.lastPong(n.ID)) }}
log.Trace("Found seed node in database", "id", n.ID, "addr", n.addr(), "age", age)
}
tab.mutex.Lock()
//这个方法把所有经过bond的seed加入到bucket(前提是bucket未满)
tab.stuff(seeds)
tab.mutex.Unlock()
// Finally, do a self lookup to fill up the buckets.
tab.lookup(tab.self.ID, false) // 有了种子节点。那么查找自己来填充buckets。
}
bondall方法,这个方法就是多线程的调用bond方法。
// bondall bonds with all given nodes concurrently and returns
// those nodes for which bonding has probably succeeded.
func (tab *Table) bondall(nodes []*Node) (result []*Node) {
rc := make(chan *Node, len(nodes))
for i := range nodes {
go func(n *Node) {
nn, _ := tab.bond(false, n.ID, n.addr(), uint16(n.TCP))
rc <- nn
}(nodes[i])
}
for range nodes {
if n := <-rc; n != nil {
result = append(result, n)
}
}
return result
}
bond方法。记得在udp.go中。当我们收到一个ping方法的时候,也有可能会调用这个方法
// bond ensures the local node has a bond with the given remote node.
// It also attempts to insert the node into the table if bonding succeeds.
// The caller must not hold tab.mutex.
// bond确保本地节点与给定的远程节点具有绑定。(远端的ID和远端的IP)。
// 如果绑定成功,它也会尝试将节点插入表中。调用者必须持有tab.mutex锁
// A bond is must be established before sending findnode requests.
// Both sides must have completed a ping/pong exchange for a bond to
// exist. The total number of active bonding processes is limited in
// order to restrain network use.
// 发送findnode请求之前必须建立一个绑定。 双方为了完成一个bond必须完成双向的ping/pong过程。
// 为了节约网路资源。 同时存在的bonding处理流程的总数量是受限的。
// bond is meant to operate idempotently in that bonding with a remote
// node which still remembers a previously established bond will work.
// The remote node will simply not send a ping back, causing waitping
// to time out.
// bond 是幂等的操作,跟一个任然记得之前的bond的远程节点进行bond也可以完成。 远程节点会简单的不会发送ping。 等待waitping超时。
// If pinged is true, the remote node has just pinged us and one half
// of the process can be skipped.
// 如果pinged是true。 那么远端节点已经给我们发送了ping消息。这样一半的流程可以跳过。
func (tab *Table) bond(pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) (*Node, error) {
if id == tab.self.ID {
return nil, errors.New("is self")
}
// Retrieve a previously known node and any recent findnode failures
node, fails := tab.db.node(id), 0
if node != nil {
fails = tab.db.findFails(id)
}
// If the node is unknown (non-bonded) or failed (remotely unknown), bond from scratch
var result error
age := time.Since(tab.db.lastPong(id))
if node == nil || fails > 0 || age > nodeDBNodeExpiration {
//如果数据库没有这个节点。 或者错误数量大于0或者节点超时。
log.Trace("Starting bonding ping/pong", "id", id, "known", node != nil, "failcount", fails, "age", age)
tab.bondmu.Lock()
w := tab.bonding[id]
if w != nil {
// Wait for an existing bonding process to complete.
tab.bondmu.Unlock()
<-w.done
} else {
// Register a new bonding process.
w = &bondproc{done: make(chan struct{})}
tab.bonding[id] = w
tab.bondmu.Unlock()
// Do the ping/pong. The result goes into w.
tab.pingpong(w, pinged, id, addr, tcpPort)
// Unregister the process after it's done.
tab.bondmu.Lock()
delete(tab.bonding, id)
tab.bondmu.Unlock()
}
// Retrieve the bonding results
result = w.err
if result == nil {
node = w.n
}
}
if node != nil {
// Add the node to the table even if the bonding ping/pong
// fails. It will be relaced quickly if it continues to be
// unresponsive.
//这个方法比较重要。 如果对应的bucket有空间,会直接插入buckets。如果buckets满了。 会用ping操作来测试buckets中的节点试图腾出空间。
tab.add(node)
tab.db.updateFindFails(id, 0)
}
return node, result
}
pingpong方法
func (tab *Table) pingpong(w *bondproc, pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) {
// Request a bonding slot to limit network usage
<-tab.bondslots
defer func() { tab.bondslots <- struct{}{} }()
// Ping the remote side and wait for a pong.
// Ping远程节点。并等待一个pong消息
if w.err = tab.ping(id, addr); w.err != nil {
close(w.done)
return
}
//这个在udp收到一个ping消息的时候被设置为真。这个时候我们已经收到对方的ping消息了。
//那么我们就不同等待ping消息了。 否则需要等待对方发送过来的ping消息(我们主动发起ping消息)。
if !pinged {
// Give the remote node a chance to ping us before we start
// sending findnode requests. If they still remember us,
// waitping will simply time out.
tab.net.waitping(id)
}
// Bonding succeeded, update the node database.
// 完成bond过程。 把节点插入数据库。 数据库操作在这里完成。 bucket的操作在tab.add里面完成。 buckets是内存的操作。 数据库是持久化的seeds节点。用来加速启动过程的。
w.n = NewNode(id, addr.IP, uint16(addr.Port), tcpPort)
tab.db.updateNode(w.n)
close(w.done)
}
tab.add方法
// add attempts to add the given node its corresponding bucket. If the
// bucket has space available, adding the node succeeds immediately.
// Otherwise, the node is added if the least recently active node in
// the bucket does not respond to a ping packet.
// add试图把给定的节点插入对应的bucket。 如果bucket有空间,那么直接插入。 否则,如果bucket中最近活动的节点没有响应ping操作,那么我们就使用这个节点替换它。
// The caller must not hold tab.mutex.
func (tab *Table) add(new *Node) {
b := tab.buckets[logdist(tab.self.sha, new.sha)]
tab.mutex.Lock()
defer tab.mutex.Unlock()
if b.bump(new) { //如果节点存在。那么更新它的值。然后退出。
return
}
var oldest *Node
if len(b.entries) == bucketSize {
oldest = b.entries[bucketSize-1]
if oldest.contested {
// The node is already being replaced, don't attempt
// to replace it.
// 如果别的goroutine正在对这个节点进行测试。 那么取消替换, 直接退出。
// 因为ping的时间比较长。所以这段时间是没有加锁的。 用了contested这个状态来标识这种情况。
return
}
oldest.contested = true
// Let go of the mutex so other goroutines can access
// the table while we ping the least recently active node.
tab.mutex.Unlock()
err := tab.ping(oldest.ID, oldest.addr())
tab.mutex.Lock()
oldest.contested = false
if err == nil {
// The node responded, don't replace it.
return
}
}
added := b.replace(new, oldest)
if added && tab.nodeAddedHook != nil {
tab.nodeAddedHook(new)
}
}
stuff方法比较简单。 找到对应节点应该插入的bucket。 如果这个bucket没有满,那么就插入这个bucket。否则什么也不做。 需要说一下的是logdist()这个方法。这个方法对两个值进行按照位置异或,然后返回最高位的下标。 比如 logdist(101,010) = 3 logdist(100, 100) = 0 logdist(100,110) = 2
// stuff adds nodes the table to the end of their corresponding bucket
// if the bucket is not full. The caller must hold tab.mutex.
func (tab *Table) stuff(nodes []*Node) {
outer:
for _, n := range nodes {
if n.ID == tab.self.ID {
continue // don't add self
}
bucket := tab.buckets[logdist(tab.self.sha, n.sha)]
for i := range bucket.entries {
if bucket.entries[i].ID == n.ID {
continue outer // already in bucket
}
}
if len(bucket.entries) < bucketSize {
bucket.entries = append(bucket.entries, n)
if tab.nodeAddedHook != nil {
tab.nodeAddedHook(n)
}
}
}
}
在看看之前的Lookup函数。 这个函数用来查询一个指定节点的信息。 这个函数首先从本地拿到距离这个节点最近的所有16个节点。 然后给所有的节点发送findnode的请求。 然后对返回的界定进行bondall处理。 然后返回所有的节点。
func (tab *Table) lookup(targetID NodeID, refreshIfEmpty bool) []*Node {
var (
target = crypto.Keccak256Hash(targetID[:])
asked = make(map[NodeID]bool)
seen = make(map[NodeID]bool)
reply = make(chan []*Node, alpha)
pendingQueries = 0
result *nodesByDistance
)
// don't query further if we hit ourself.
// unlikely to happen often in practice.
asked[tab.self.ID] = true
不会询问我们自己
for {
tab.mutex.Lock()
// generate initial result set
result = tab.closest(target, bucketSize)
//求取和target最近的16个节点
tab.mutex.Unlock()
if len(result.entries) > 0 || !refreshIfEmpty {
break
}
// The result set is empty, all nodes were dropped, refresh.
// We actually wait for the refresh to complete here. The very
// first query will hit this case and run the bootstrapping
// logic.
<-tab.refresh()
refreshIfEmpty = false
}
for {
// ask the alpha closest nodes that we haven't asked yet
// 这里会并发的查询,每次3个goroutine并发(通过pendingQueries参数进行控制)
// 每次迭代会查询result中和target距离最近的三个节点。
for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
n := result.entries[i]
if !asked[n.ID] { //如果没有查询过 //因为这个result.entries会被重复循环很多次。 所以用这个变量控制那些已经处理过了。
asked[n.ID] = true
pendingQueries++
go func() {
// Find potential neighbors to bond with
r, err := tab.net.findnode(n.ID, n.addr(), targetID)
if err != nil {
// Bump the failure counter to detect and evacuate non-bonded entries
fails := tab.db.findFails(n.ID) + 1
tab.db.updateFindFails(n.ID, fails)
log.Trace("Bumping findnode failure counter", "id", n.ID, "failcount", fails)
if fails >= maxFindnodeFailures {
log.Trace("Too many findnode failures, dropping", "id", n.ID, "failcount", fails)
tab.delete(n)
}
}
reply <- tab.bondall(r)
}()
}
}
if pendingQueries == 0 {
// we have asked all closest nodes, stop the search
break
}
// wait for the next reply
for _, n := range <-reply {
if n != nil && !seen[n.ID] { //因为不同的远方节点可能返回相同的节点。所有用seen[]来做排重。
seen[n.ID] = true
//这个地方需要注意的是, 查找出来的结果又会加入result这个队列。也就是说这是一个循环查找的过程, 只要result里面不断加入新的节点。这个循环就不会终止。
result.push(n, bucketSize)
}
}
pendingQueries--
}
return result.entries
}
// closest returns the n nodes in the table that are closest to the
// given id. The caller must hold tab.mutex.
func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance {
// This is a very wasteful way to find the closest nodes but
// obviously correct. I believe that tree-based buckets would make
// this easier to implement efficiently.
close := &nodesByDistance{target: target}
for _, b := range tab.buckets {
for _, n := range b.entries {
close.push(n, nresults)
}
}
return close
}
result.push方法,这个方法会根据 所有的节点对于target的距离进行排序。 按照从近到远的方式决定新节点的插入顺序。(队列中最大会包含16个元素)。 这样会导致队列里面的元素和target的距离越来越近。距离相对远的会被踢出队列。
// nodesByDistance is a list of nodes, ordered by
// distance to target.
type nodesByDistance struct {
entries []*Node
target common.Hash
}
// push adds the given node to the list, keeping the total size below maxElems.
func (h *nodesByDistance) push(n *Node, maxElems int) {
ix := sort.Search(len(h.entries), func(i int) bool {
return distcmp(h.target, h.entries[i].sha, n.sha) > 0
})
if len(h.entries) < maxElems {
h.entries = append(h.entries, n)
}
if ix == len(h.entries) {
// farther away than all nodes we already have.
// if there was room for it, the node is now the last element.
} else {
// slide existing entries down to make room
// this will overwrite the entry we just appended.
copy(h.entries[ix+1:], h.entries[ix:])
h.entries[ix] = n
}
}
Resolve方法和Lookup方法
// Resolve searches for a specific node with the given ID.
// It returns nil if the node could not be found.
//Resolve方法用来获取一个指定ID的节点。 如果节点在本地。那么返回本地节点。 否则执行
//Lookup在网络上查询一次。 如果查询到节点。那么返回。否则返回nil
func (tab *Table) Resolve(targetID NodeID) *Node {
// If the node is present in the local table, no
// network interaction is required.
hash := crypto.Keccak256Hash(targetID[:])
tab.mutex.Lock()
cl := tab.closest(hash, 1)
tab.mutex.Unlock()
if len(cl.entries) > 0 && cl.entries[0].ID == targetID {
return cl.entries[0]
}
// Otherwise, do a network lookup.
result := tab.Lookup(targetID)
for _, n := range result {
if n.ID == targetID {
return n
}
}
return nil
}
// Lookup performs a network search for nodes close
// to the given target. It approaches the target by querying
// nodes that are closer to it on each iteration.
// The given target does not need to be an actual node
// identifier.
func (tab *Table) Lookup(targetID NodeID) []*Node {
return tab.lookup(targetID, true)
}
SetFallbackNodes方法,这个方法设置初始化的联系节点。 在table是空而且数据库里面也没有已知的节点,这些节点可以帮助连接上网络,
// SetFallbackNodes sets the initial points of contact. These nodes
// are used to connect to the network if the table is empty and there
// are no known nodes in the database.
func (tab *Table) SetFallbackNodes(nodes []*Node) error {
for _, n := range nodes {
if err := n.validateComplete(); err != nil {
return fmt.Errorf("bad bootstrap/fallback node %q (%v)", n, err)
}
}
tab.mutex.Lock()
tab.nursery = make([]*Node, 0, len(nodes))
for _, n := range nodes {
cpy := *n
// Recompute cpy.sha because the node might not have been
// created by NewNode or ParseNode.
cpy.sha = crypto.Keccak256Hash(n.ID[:])
tab.nursery = append(tab.nursery, &cpy)
}
tab.mutex.Unlock()
tab.refresh()
return nil
}
这样, p2p网络的Kademlia协议就完结了。 基本上是按照论文进行实现。 udp进行网络通信。数据库存储链接过的节点。 table实现了Kademlia的核心。 根据异或距离来进行节点的查找。 节点的发现和更新等流程。