-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_tube_latent.py
684 lines (557 loc) · 26.5 KB
/
data_tube_latent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
import os
import torch
import time
import random
import numpy as np
import gzip
import pickle
import h5py
import json
import pycocotools._mask as _mask
import cv2
from skimage import io, transform
from PIL import Image
import multiprocessing as mp
import scipy.spatial as spatial
from sklearn.cluster import MiniBatchKMeans
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torch.autograd import Variable
from utils import prepare_relations, convert_mask_to_bbox, crop, encode_attr
from utils import normalize, check_attr, get_identifier, get_identifiers
from utils import check_same_identifier, check_same_identifiers, check_contain_id
from utils import get_masks, check_valid_masks, check_duplicate_identifier
from utils import rand_float, init_stat, combine_stat, load_data, store_data
from utils import decode, make_video
import utils_tube as utilsTube
from utils_tube import check_box_in_tubes
import pdb
import pycocotools.mask as cocoMask
import copy
import jactorch.transforms.bbox as T
def decode_mask_to_box(mask, crop_box_size, H, W):
bbx_xywh_ori = cocoMask.toBbox(mask)
bbx_xywh = copy.deepcopy(bbx_xywh_ori)
bbx_xyxy = copy.deepcopy(bbx_xywh)
crop_box = copy.deepcopy(bbx_xywh)
bbx_xyxy[2] = bbx_xyxy[2] + bbx_xyxy[0]
bbx_xyxy[3] = bbx_xyxy[3] + bbx_xyxy[1]
bbx_xywh[0] = bbx_xywh[0]*1.0/mask['size'][1]
bbx_xywh[2] = bbx_xywh[2]*1.0/mask['size'][1]
bbx_xywh[1] = bbx_xywh[1]*1.0/mask['size'][0]
bbx_xywh[3] = bbx_xywh[3]*1.0/mask['size'][0]
bbx_xywh[0] = bbx_xywh[0] + bbx_xywh[2]/2.0
bbx_xywh[1] = bbx_xywh[1] + bbx_xywh[3]/2.0
crop_box[1] = int((bbx_xyxy[0])*W/mask['size'][1]) # w
crop_box[0] = int((bbx_xyxy[1])*H/mask['size'][0]) # h
crop_box[2] = int(crop_box_size[0])
crop_box[3] = int(crop_box_size[1])
crop_box_v2 = copy.deepcopy(crop_box)
off_set_x = max(int(0.5*(crop_box_size[0]-bbx_xywh_ori[2]*W/mask['size'][1])), 0)
off_set_y = max(int(0.5*(crop_box_size[1]-bbx_xywh_ori[3]*H/mask['size'][0])), 0)
crop_box_v2[0] = crop_box_v2[0] - off_set_y # w
crop_box_v2[1] = crop_box_v2[1] - off_set_x # h
#pdb.set_trace()
ret = np.ones((4, crop_box_size[0], crop_box_size[1]))
ret[0, :, :] *= bbx_xywh[0]
ret[1, :, :] *= bbx_xywh[1]
ret[2, :, :] *= bbx_xywh[2]
ret[3, :, :] *= bbx_xywh[3]
ret = torch.FloatTensor(ret)
return bbx_xyxy, ret, crop_box.astype(int), crop_box_v2.astype(int)
def collate_fn(data):
return data[0]
def pil_loader(path):
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def default_loader(path):
return pil_loader(path)
class PhysicsCLEVRDataset(Dataset):
def __init__(self, args, phase):
self.args = args
self.phase = phase
self.loader = default_loader
self.data_dir = args.data_dir
self.label_dir = args.label_dir
self.prp_dir = args.prp_dir
self.ann_dir = args.ann_dir
self.tube_dir = args.tube_dir
self.valid_idx_lst = 'valid_idx_' + self.phase + '.txt'
self.H = 100
self.W = 150
self.bbox_size = 24
ratio = self.args.train_valid_ratio
n_train = round(self.args.n_rollout * ratio)
if phase == 'train':
self.st_idx = 0
self.n_rollout = n_train
elif phase == 'valid':
self.st_idx = n_train
self.n_rollout = self.args.n_rollout - n_train
else:
raise AssertionError("Unknown phase")
if self.args.gen_valid_idx:
if self.args.visualize_flag==1:
self.gen_predict_input()
elif self.args.version=='v3':
self.gen_valid_idx_from_tube_info_v3()
else:
self.gen_valid_idx_from_tube_info()
else:
self.read_valid_idx()
self.img_transform = T.Compose([
T.Resize(self.args.img_size),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
self.W = 480; self.H = 320
def gen_predict_input(self):
print("Preprocessing valid idx ...")
self.n_valid_idx = 0
self.valid_idx = []
self.metadata = []
fout = open(self.valid_idx_lst, 'w')
n_his = self.args.n_his
frame_offset = self.args.frame_offset
for i in range(self.st_idx, self.st_idx + self.n_rollout):
if i % 500 == 0:
print("Preprocessing valid idx %d/%d" % (i, self.st_idx + self.n_rollout))
vid = int(i/1000)
ann_full_dir = os.path.join(self.ann_dir, 'annotation_%02d000-%02d000'%(vid, vid+1))
#with open(os.path.join(self.label_dir, 'proposal_%05d.json' % i)) as f:
#pk_path = os.path.join(self.tube_dir, 'annotation_%05d.pk' % i)
pk_path = os.path.join(self.tube_dir, 'proposal_%05d.pk' % i)
prp_path = os.path.join(self.prp_dir, 'proposal_%05d.json' % i)
ann_path = os.path.join(ann_full_dir, 'annotation_%05d.json' % i)
if not os.path.isfile(pk_path):
pk_path = os.path.join(self.tube_dir, 'annotation_%05d.pk' % i)
tubes_info = utilsTube.pickleload(pk_path)
prp_info = utilsTube.jsonload(prp_path)
data = utilsTube.jsonload(ann_path)
data['tubes'] = tubes_info['tubes']
data['proposals'] = prp_info
self.metadata.append(data)
#pdb.set_trace()
j = n_his * frame_offset
frm_list = []
objects = data['proposals']['frames'][j]['objects']
frm_list.append(j)
n_object_cur = len(objects)
# check whether the target is valid
idx = j + frame_offset
objects_nxt = data['proposals']['frames'][idx]['objects']
n_object_nxt = len(objects_nxt)
frm_list.append(idx)
self.valid_idx.append((i - self.st_idx, j))
fout.write('%d %d\n' % (i - self.st_idx, j))
self.n_valid_idx += 1
fout.close()
def read_valid_idx(self):
# if self.phase == 'train':
# return
print("Reading valid idx ...")
self.n_valid_idx = 0
self.valid_idx = []
self.metadata = []
fin = open(self.valid_idx_lst, 'r').readlines()
self.n_valid_idx = len(fin)
for i in range(self.n_valid_idx):
a = int(fin[i].strip().split(' ')[0])
b = int(fin[i].strip().split(' ')[1])
self.valid_idx.append((a, b))
for i in range(self.st_idx, self.st_idx + self.n_rollout):
if i % 500 == 0:
print("Reading valid idx %d/%d" % (i, self.st_idx + self.n_rollout))
vid = int(i/1000)
ann_full_dir = os.path.join(self.ann_dir, 'annotation_%02d000-%02d000'%(vid, vid+1))
#pk_path = os.path.join(self.tube_dir, 'annotation_%05d.pk' % i)
pk_path = os.path.join(self.tube_dir, 'proposal_%05d.pk' % i)
prp_path = os.path.join(self.prp_dir, 'proposal_%05d.json' % i)
ann_path = os.path.join(ann_full_dir, 'annotation_%05d.json' % i)
if not os.path.isfile(pk_path):
pk_path = os.path.join(self.tube_dir, 'annotation_%05d.pk' % i)
tubes_info = utilsTube.pickleload(pk_path)
prp_info = utilsTube.jsonload(prp_path)
data = utilsTube.jsonload(ann_path)
data['tubes'] = tubes_info['tubes']
data['proposals'] = prp_info
self.metadata.append(data)
def gen_valid_idx_from_tube_info_v3(self):
print("Preprocessing valid idx ...")
self.n_valid_idx = 0
self.valid_idx = []
self.metadata = []
fout = open(self.valid_idx_lst, 'w')
n_his = self.args.n_his
frame_offset = self.args.frame_offset
for i in range(self.st_idx, self.st_idx + self.n_rollout):
if i % 500 == 0:
print("Preprocessing valid idx %d/%d" % (i, self.st_idx + self.n_rollout))
vid = int(i/1000)
ann_full_dir = os.path.join(self.ann_dir, 'annotation_%02d000-%02d000'%(vid, vid+1))
#with open(os.path.join(self.label_dir, 'proposal_%05d.json' % i)) as f:
#pk_path = os.path.join(self.tube_dir, 'annotation_%05d.pk' % i)
pk_path = os.path.join(self.tube_dir, 'proposal_%05d.pk' % i)
prp_path = os.path.join(self.prp_dir, 'proposal_%05d.json' % i)
ann_path = os.path.join(ann_full_dir, 'annotation_%05d.json' % i)
if not os.path.isfile(pk_path):
pk_path = os.path.join(self.tube_dir, 'annotation_%05d.pk' % i)
tubes_info = utilsTube.pickleload(pk_path)
prp_info = utilsTube.jsonload(prp_path)
data = utilsTube.jsonload(ann_path)
data['tubes'] = tubes_info['tubes']
data['proposals'] = prp_info
self.metadata.append(data)
#pdb.set_trace()
for j in range(
n_his * frame_offset,
len(data['proposals']['frames']) - frame_offset):
frm_list = []
objects = data['proposals']['frames'][j]['objects']
frm_list.append(j)
n_object_cur = len(objects)
valid = True
if not check_box_in_tubes(objects, j, data['tubes']):
valid = False
# check whether history window is valid
for k in range(n_his):
idx = j - (k + 1) * frame_offset
objects = data['proposals']['frames'][idx]['objects']
frm_list.append(idx)
n_object = len(objects)
if (not valid) or n_object != n_object_cur:
valid = False
break
if not check_box_in_tubes(objects, idx, data['tubes']):
valid = False
# check valid tube, making box valid
if k==(n_his-1):
tube_num = len(data['tubes'])
for tube_id in range(tube_num):
tmp_box = data['tubes'][tube_id][idx]
if tmp_box == [0, 0, 1, 1]:
valid = False
break
if valid:
# check whether the target is valid
idx = j + frame_offset
objects_nxt = data['proposals']['frames'][idx]['objects']
n_object_nxt = len(objects_nxt)
frm_list.append(idx)
if (not valid) or n_object_nxt != n_object_cur:
valid = False
if utilsTube.check_object_inconsistent_identifier(frm_list, data['tubes']):
valid = False
if utilsTube.checking_duplicate_box_among_tubes(frm_list, data['tubes']):
valid = False
if not check_box_in_tubes(objects_nxt, idx, data['tubes']):
valid = False
if valid:
self.valid_idx.append((i - self.st_idx, j))
fout.write('%d %d\n' % (i - self.st_idx, j))
self.n_valid_idx += 1
fout.close()
def gen_valid_idx_from_tube_info(self):
print("Preprocessing valid idx ...")
self.n_valid_idx = 0
self.valid_idx = []
self.metadata = []
fout = open(self.valid_idx_lst, 'w')
n_his = self.args.n_his
frame_offset = self.args.frame_offset
for i in range(self.st_idx, self.st_idx + self.n_rollout):
if i % 500 == 0:
print("Preprocessing valid idx %d/%d" % (i, self.st_idx + self.n_rollout))
vid = int(i/1000)
ann_full_dir = os.path.join(self.ann_dir, 'annotation_%02d000-%02d000'%(vid, vid+1))
#with open(os.path.join(self.label_dir, 'proposal_%05d.json' % i)) as f:
#pk_path = os.path.join(self.tube_dir, 'annotation_%05d.pk' % i)
pk_path = os.path.join(self.tube_dir, 'proposal_%05d.pk' % i)
prp_path = os.path.join(self.prp_dir, 'proposal_%05d.json' % i)
ann_path = os.path.join(ann_full_dir, 'annotation_%05d.json' % i)
if not os.path.isfile(pk_path):
pk_path = os.path.join(self.tube_dir, 'annotation_%05d.pk' % i)
tubes_info = utilsTube.pickleload(pk_path)
prp_info = utilsTube.jsonload(prp_path)
data = utilsTube.jsonload(ann_path)
data['tubes'] = tubes_info['tubes']
data['proposals'] = prp_info
self.metadata.append(data)
#pdb.set_trace()
for j in range(
n_his * frame_offset,
len(data['proposals']['frames']) - frame_offset):
frm_list = []
objects = data['proposals']['frames'][j]['objects']
frm_list.append(j)
n_object_cur = len(objects)
valid = True
if not check_box_in_tubes(objects, j, data['tubes']):
valid = False
# check whether history window is valid
for k in range(n_his):
idx = j - (k + 1) * frame_offset
objects = data['proposals']['frames'][idx]['objects']
frm_list.append(idx)
n_object = len(objects)
if (not valid) or n_object != n_object_cur:
valid = False
break
if not check_box_in_tubes(objects, idx, data['tubes']):
valid = False
if valid:
# check whether the target is valid
idx = j + frame_offset
objects_nxt = data['proposals']['frames'][idx]['objects']
n_object_nxt = len(objects_nxt)
frm_list.append(idx)
if (not valid) or n_object_nxt != n_object_cur:
valid = False
if utilsTube.check_object_inconsistent_identifier(frm_list, data['tubes']):
valid = False
if utilsTube.checking_duplicate_box_among_tubes(frm_list, data['tubes']):
valid = False
if not check_box_in_tubes(objects_nxt, idx, data['tubes']):
valid = False
if valid:
self.valid_idx.append((i - self.st_idx, j))
fout.write('%d %d\n' % (i - self.st_idx, j))
self.n_valid_idx += 1
fout.close()
'''
def read_valid_idx(self):
fin = open(self.valid_idx_lst, 'r').readlines()
self.n_valid_idx = len(fin)
self.valid_idx = []
for i in range(len(fin)):
idx = [int(x) for x in fin[i].strip().split(' ')]
self.valid_idx.append((idx[0], idx[1]))
'''
def __len__(self):
return self.n_valid_idx
def __getitem__(self, idx):
if self.args.visualize_flag==1:
return self.get_valid_item(idx)
elif self.args.data_ver =='v1':
return self.__getitem__v1(idx)
elif self.args.data_ver =='v2':
return self.__getitem__v2(idx)
elif self.args.data_ver =='v3':
return self.__getitem__v2(idx)
def __getitem__v2(self, idx):
n_his = self.args.n_his
frame_offset = self.args.frame_offset
idx_video, idx_frame = self.valid_idx[idx][0], self.valid_idx[idx][1]
objs = []
attrs = []
img_list = []
obj_num = len(self.metadata[idx_video]['tubes'])
smp_tube_info = {obj_id:{'boxes': [], 'frm_name': []} for obj_id in range(obj_num)}
frm_idx_list = []
box_seq = {obj_id: [] for obj_id in range(obj_num)}
invalid_tube_id_list = []
for i in range(
idx_frame - n_his * frame_offset,
idx_frame + frame_offset + 1, frame_offset):
frame = self.metadata[idx_video]['proposals']['frames'][i]
#frame_filename = frame['frame_filename']
frame_filename = os.path.join('video_'+str(idx_video).zfill(5), str(frame['frame_index']+1)+'.png')
vid = int(idx_video/1000)
ann_full_dir = os.path.join(self.data_dir, 'image_%02d000-%02d000'%(vid, vid+1))
img_full_path = os.path.join(ann_full_dir, frame_filename)
img = Image.open(img_full_path).convert('RGB')
W_ori, H_ori = img.size
img, _ = self.img_transform(img, np.array([0, 0, 1, 1]))
img_list.append(img)
frm_idx_list.append(i)
img_size = self.args.img_size
ratio = img_size / min(H_ori, W_ori)
### prepare object inputs
object_inputs = []
for j in range(obj_num):
bbox_xyxy = self.metadata[idx_video]['tubes'][j][i]
if bbox_xyxy == [0, 0, 1, 1]:
#invalid_tube_id_list.append(j)
#continue
box_seq[j].append(torch.tensor([-1, -1, -1, -1]).float())
else:
box_tensor_ori = torch.tensor(bbox_xyxy).float()
box_tensor_norm = box_tensor_ori.clone()
box_tensor_target = box_tensor_ori.clone()
box_tensor_target = box_tensor_target*ratio
box_tensor_norm[0] = box_tensor_norm[0]/W_ori
box_tensor_norm[2] = box_tensor_norm[2]/W_ori
box_tensor_norm[1] = box_tensor_norm[1]/H_ori
box_tensor_norm[3] = box_tensor_norm[3]/H_ori
box_xyhw = box_tensor_norm.clone()
box_xyhw[2] = box_xyhw[2] - box_xyhw[0]
box_xyhw[3] = box_xyhw[3] - box_xyhw[1]
box_xyhw[1] = box_xyhw[1] + box_xyhw[3]*0.5
box_xyhw[0] = box_xyhw[0] + box_xyhw[2]*0.5
smp_tube_info[j]['boxes'].append(box_tensor_target)
smp_tube_info[j]['frm_name'].append(i)
box_seq[j].append(box_xyhw)
smp_tube_info['box_seq'] = box_seq
smp_tube_info['frm_list'] = frm_idx_list
img_tensor = torch.stack(img_list, 0)
data = {}
data['img_future'] = img_tensor
data['predictions'] = smp_tube_info
return data
def __getitem__v1(self, idx):
n_his = self.args.n_his
frame_offset = self.args.frame_offset
idx_video, idx_frame = self.valid_idx[idx][0], self.valid_idx[idx][1]
objs = []
attrs = []
img_list = []
obj_num = len(self.metadata[idx_video]['tubes'])
smp_tube_info = {obj_id:{'boxes': [], 'frm_name': []} for obj_id in range(obj_num)}
frm_idx_list = []
box_seq = {obj_id: [] for obj_id in range(obj_num)}
invalid_tube_id_list = []
for i in range(
idx_frame - n_his * frame_offset,
idx_frame + frame_offset + 1, frame_offset):
frame = self.metadata[idx_video]['proposals']['frames'][i]
#frame_filename = frame['frame_filename']
frame_filename = os.path.join('video_'+str(idx_video).zfill(5), str(frame['frame_index']+1)+'.png')
vid = int(idx_video/1000)
ann_full_dir = os.path.join(self.data_dir, 'image_%02d000-%02d000'%(vid, vid+1))
img_full_path = os.path.join(ann_full_dir, frame_filename)
img = Image.open(img_full_path).convert('RGB')
W_ori, H_ori = img.size
img, _ = self.img_transform(img, np.array([0, 0, 1, 1]))
img_list.append(img)
frm_idx_list.append(i)
img_size = self.args.img_size
ratio = img_size / min(H_ori, W_ori)
### prepare object inputs
object_inputs = []
for j in range(obj_num):
bbox_xyxy = self.metadata[idx_video]['tubes'][j][i]
if bbox_xyxy == [0, 0, 1, 1]:
invalid_tube_id_list.append(j)
continue
box_tensor_ori = torch.tensor(bbox_xyxy).float()
box_tensor_norm = box_tensor_ori.clone()
box_tensor_target = box_tensor_ori.clone()
box_tensor_target = box_tensor_target*ratio
box_tensor_norm[0] = box_tensor_norm[0]/W_ori
box_tensor_norm[2] = box_tensor_norm[2]/W_ori
box_tensor_norm[1] = box_tensor_norm[1]/H_ori
box_tensor_norm[3] = box_tensor_norm[3]/H_ori
box_xyhw = box_tensor_norm.clone()
box_xyhw[2] = box_xyhw[2] - box_xyhw[0]
box_xyhw[3] = box_xyhw[3] - box_xyhw[1]
box_xyhw[1] = box_xyhw[1] + box_xyhw[3]*0.5
box_xyhw[0] = box_xyhw[0] + box_xyhw[2]*0.5
smp_tube_info[j]['boxes'].append(box_tensor_target)
smp_tube_info[j]['frm_name'].append(i)
box_seq[j].append(box_xyhw)
invalid_tube_id_list_unqiue = list(set(invalid_tube_id_list))
for tube_id in sorted(invalid_tube_id_list_unqiue, reverse=True):
del box_seq[tube_id]
del smp_tube_info[tube_id]
new_tube_idx = 0
valid_tube_id_list = [tube_id for tube_id in range(obj_num) if tube_id not in invalid_tube_id_list_unqiue]
new_smp_tube_info = {}
new_box_seq = {}
for new_idx, tube_id in enumerate(sorted(valid_tube_id_list, reverse=False)):
new_smp_tube_info[new_idx] = smp_tube_info[tube_id]
new_box_seq[new_idx] = box_seq[tube_id]
# TODO: solve it more elegantly
if len(valid_tube_id_list)==0:
return self.__getitem__(idx+1)
new_smp_tube_info['box_seq'] = new_box_seq
new_smp_tube_info['frm_list'] = frm_idx_list
img_tensor = torch.stack(img_list, 0)
data = {}
data['img_future'] = img_tensor
data['predictions'] = new_smp_tube_info
return data
def get_valid_item(self, idx):
n_his = self.args.n_his
frame_offset = self.args.frame_offset
idx_video, idx_frame = self.valid_idx[idx][0], self.valid_idx[idx][1]
objs = []
attrs = []
img_list = []
obj_num = len(self.metadata[idx_video]['tubes'])
smp_tube_info = {obj_id:{'boxes': [], 'frm_name': []} for obj_id in range(obj_num)}
frm_idx_list = []
box_seq = {obj_id: [] for obj_id in range(obj_num)}
invalid_tube_id_list = []
for i in range(
idx_frame - n_his * frame_offset,
125, frame_offset):
#idx_frame + frame_offset + 1, frame_offset):
frame = self.metadata[idx_video]['proposals']['frames'][i]
#frame_filename = frame['frame_filename']
frame_filename = os.path.join('video_'+str(idx_video).zfill(5), str(frame['frame_index']+1)+'.png')
vid = int(idx_video/1000)
ann_full_dir = os.path.join(self.data_dir, 'image_%02d000-%02d000'%(vid, vid+1))
img_full_path = os.path.join(ann_full_dir, frame_filename)
img = Image.open(img_full_path).convert('RGB')
W_ori, H_ori = img.size
img, _ = self.img_transform(img, np.array([0, 0, 1, 1]))
img_list.append(img)
frm_idx_list.append(i)
img_size = self.args.img_size
ratio = img_size / min(H_ori, W_ori)
### prepare object inputs
object_inputs = []
for j in range(obj_num):
bbox_xyxy = self.metadata[idx_video]['tubes'][j][i]
if bbox_xyxy == [0, 0, 1, 1]:
#invalid_tube_id_list.append(j)
#continue
box_seq[j].append(torch.tensor([-1, -1, -1, -1]).float())
else:
box_tensor_ori = torch.tensor(bbox_xyxy).float()
box_tensor_norm = box_tensor_ori.clone()
box_tensor_target = box_tensor_ori.clone()
box_tensor_target = box_tensor_target*ratio
box_tensor_norm[0] = box_tensor_norm[0]/W_ori
box_tensor_norm[2] = box_tensor_norm[2]/W_ori
box_tensor_norm[1] = box_tensor_norm[1]/H_ori
box_tensor_norm[3] = box_tensor_norm[3]/H_ori
box_xyhw = box_tensor_norm.clone()
box_xyhw[2] = box_xyhw[2] - box_xyhw[0]
box_xyhw[3] = box_xyhw[3] - box_xyhw[1]
box_xyhw[1] = box_xyhw[1] + box_xyhw[3]*0.5
box_xyhw[0] = box_xyhw[0] + box_xyhw[2]*0.5
smp_tube_info[j]['boxes'].append(box_tensor_target)
smp_tube_info[j]['frm_name'].append(i)
box_seq[j].append(box_xyhw)
smp_tube_info['box_seq'] = box_seq
smp_tube_info['frm_list'] = frm_idx_list
img_tensor = torch.stack(img_list, 0)
data = {}
data['img_future'] = img_tensor
data['predictions'] = smp_tube_info
data['tube_info'] = smp_tube_info
data['meta_ann'] = self.metadata[idx_video]
data['tube_info']['box_seq']['tubes'] = {}
for tube_id, tmp_tube in enumerate(self.metadata[idx_video]['tubes']):
data['tube_info']['box_seq']['tubes'][tube_id] = {}
tmp_dict = {}
frm_num = len(tmp_tube)
for frm_id in range(frm_num):
tmp_box = tmp_tube[frm_id]
if tmp_box == [0, 0, 1, 1]:
tmp_box = [-1*self.W, -1*self.H, -1*self.W, -1*self.H]
#tmp_box = [0, 0, 0, 0]
x_c = (tmp_box[0] + tmp_box[2])* 0.5
y_c = (tmp_box[1] + tmp_box[3])* 0.5
w = tmp_box[2] - tmp_box[0]
h = tmp_box[3] - tmp_box[1]
tmp_array = np.array([x_c, y_c, w, h])
tmp_array[0] = tmp_array[0] / self.W
tmp_array[1] = tmp_array[1] / self.H
tmp_array[2] = tmp_array[2] / self.W
tmp_array[3] = tmp_array[3] / self.H
data['tube_info']['box_seq']['tubes'][tube_id][frm_id] = tmp_array
return data