-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_abs.py
299 lines (246 loc) · 10.8 KB
/
train_abs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
import sys
import random
import time
import cv2
import argparse
import numpy as np
import matplotlib.pyplot as plt
import torch.multiprocessing as mp
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from models_abs import PropagationNetwork
from data_abs import PhysicsCLEVRDataset, collate_fn
from utils import count_parameters, Tee
import pdb
from utils_tube import set_debugger
set_debugger()
parser = argparse.ArgumentParser()
parser.add_argument('--pn', type=int, default=1)
parser.add_argument('--pstep', type=int, default=2)
parser.add_argument('--data_dir', default='')
parser.add_argument('--label_dir', default='')
parser.add_argument('--n_rollout', type=int, default=0)
parser.add_argument('--n_particle', type=int, default=0)
parser.add_argument('--time_step', type=int, default=0)
parser.add_argument('--nf_relation', type=int, default=128)
parser.add_argument('--nf_particle', type=int, default=128)
parser.add_argument('--nf_effect', type=int, default=128*4)
parser.add_argument('--env', default='CLEVR')
parser.add_argument('--dt', default=1./5.)
parser.add_argument('--train_valid_ratio', type=float, default=0.90909)
parser.add_argument('--outf', default='files')
parser.add_argument('--dataf', default='data')
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--log_per_iter', type=int, default=1000)
parser.add_argument('--ckp_per_iter', type=int, default=50000)
parser.add_argument('--eval', type=int, default=0)
parser.add_argument('--edge_superv', type=int, default=1, help='whether to include edge supervision')
parser.add_argument('--use_attr', type=int, default=1, help='whether using attributes or not')
parser.add_argument('--n_his', type=int, default=2)
parser.add_argument('--frame_offset', type=int, default=5)
parser.add_argument('--gen_valid_idx', type=int, default=0)
parser.add_argument('--lam_mask', type=float, default=0.2)
parser.add_argument('--lam_position', type=float, default=20.)
parser.add_argument('--lam_image', type=float, default=0.25)
parser.add_argument('--lam_collision', type=float, default=0.6)
parser.add_argument('--lam_hw', type=float, default=20.)
parser.add_argument('--n_epoch', type=int, default=1000)
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--forward_times', type=int, default=2)
parser.add_argument('--resume_epoch', type=int, default=0)
parser.add_argument('--resume_iter', type=int, default=0)
# object attributes (material, shape):
# [rubber, metal, cube, cylinder, sphere]
parser.add_argument('--attr_dim', type=int, default=5)
# object state:
# [mask, dx, dy, dw, dh, r, g, b]
parser.add_argument('--state_dim', type=int, default=6)
# relation:
# [collision, dx, dy]
parser.add_argument('--relation_dim', type=int, default=3)
parser.add_argument('--tube_mode', type=int, default=0)
# new input
parser.add_argument('--debug', type=int, default=0)
parser.add_argument('--box_only_flag', type=int, default=0)
parser.add_argument('--add_hw_state_flag', type=int, default=0)
parser.add_argument('--rm_mask_state_flag', type=int, default=0)
parser.add_argument('--add_xyhw_state_flag', type=int, default=0)
args = parser.parse_args()
### deal with issue that dataloader hangs
cv2.setNumThreads(0)
if args.env == 'CLEVR':
#args.n_rollout = 11000
#args.time_step = 128
#args.n_rollout = 11000
#args.train_valid_ratio = 0.909
if args.debug:
args.n_rollout = 15
args.train_valid_ratio = 0.666
shuffle_flag = False
else:
args.n_rollout = 15000
args.train_valid_ratio = 0.666
shuffle_flag = True
else:
raise AssertionError("Unsupported env")
args.outf = args.outf + '_' + args.env
if args.use_attr == 0:
args.outf += '_noAttr'
if args.edge_superv == 0:
args.outf += '_noEdgeSuperv'
if args.pn:
args.outf += '_pn'
args.outf += '_pstep_' + str(args.pstep) + '_abs'
# args.dataf = args.dataf + '_' + args.env
os.system('mkdir -p ' + args.outf)
# os.system('mkdir -p ' + args.dataf)
# setup recorder
#tee = Tee(os.path.join(args.outf, 'train.log'), 'w')
print(args)
# generate data
datasets = {phase: PhysicsCLEVRDataset(args, phase) for phase in ['train', 'valid']}
use_gpu = torch.cuda.is_available()
shuffle_flag=True
num_workers = args.num_workers
if args.debug:
shuffle_flag=False
num_workers = 0
dataloaders = {x: torch.utils.data.DataLoader(
datasets[x], batch_size=args.batch_size,
shuffle=shuffle_flag if x == 'train' else False,
num_workers=num_workers,
collate_fn=collate_fn)
for x in ['train', 'valid']}
# define propagation network
model = PropagationNetwork(args, residual=True, use_gpu=use_gpu)
print("model #params: %d" % count_parameters(model))
if args.resume_epoch > 0 or args.resume_iter > 0:
model_path = os.path.join(args.outf, 'net_epoch_%d_iter_%d.pth' % (args.resume_epoch, args.resume_iter))
print("Loading saved ckp from %s" % model_path)
model.load_state_dict(torch.load(model_path))
# criterion
criterionMSE = nn.MSELoss()
# optimizer
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(args.beta1, 0.999))
scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.8, patience=3, verbose=True)
if use_gpu:
model = model.cuda()
criterionMSE = criterionMSE.cuda()
st_epoch = args.resume_epoch if args.resume_epoch > 0 else 0
best_valid_loss = np.inf
for epoch in range(st_epoch, args.n_epoch):
phases = ['train', 'valid'] if args.eval == 0 else ['valid']
for phase in phases:
model.train(phase=='train')
losses = 0.
losses_mask = 0.
losses_position = 0.
losses_image = 0.
losses_collision = 0.
losses_hw = 0.
for i, data in enumerate(dataloaders[phase]):
attr, x, rel, label_obj, label_rel = data
node_r_idx, node_s_idx, Ra = rel[3], rel[4], rel[5]
Rr_idx, Rs_idx, value = rel[0], rel[1], rel[2]
Rr = torch.sparse.FloatTensor(
Rr_idx, value, torch.Size([node_r_idx.shape[0], value.size(0)]))
Rs = torch.sparse.FloatTensor(
Rs_idx, value, torch.Size([node_s_idx.shape[0], value.size(0)]))
data = [attr, x, Rr, Rs, Ra, label_obj, label_rel]
with torch.set_grad_enabled(phase=='train'):
for d in range(len(data)):
if use_gpu:
data[d] = Variable(data[d].cuda())
else:
data[d] = Variable(data[d])
attr, x, Rr, Rs, Ra, label_obj, label_rel = data
pred_obj, pred_rel = model(
attr, x, Rr, Rs, Ra, node_r_idx, node_s_idx, args.pstep)
if args.box_only_flag:
position = pred_obj
collision = pred_rel
else:
mask = pred_obj[:, 0]
position = pred_obj[:, 1:3]
image = pred_obj[:, 3:6]
collision = pred_rel
if args.add_hw_state_flag or args.add_xyhw_state_flag:
hw_pred = pred_obj[:, 6:]
'''
print('mask\n', mask)
print('x\n', position[0])
print('y\n', position[1])
print('img\n', image[0])
'''
loss = 0.0
if args.box_only_flag:
loss_position = criterionMSE(position, label_obj)
loss_collision = criterionMSE(collision, label_rel)
loss_image = torch.zeros(1).cuda()
loss_mask = torch.zeros(1).cuda()
losses_image += np.sqrt(loss_image.item())
losses_mask += np.sqrt(loss_mask.item())
else:
loss_position = criterionMSE(position, label_obj[:, 1:3])
if args.rm_mask_state_flag:
loss_mask = torch.zeros(1).cuda()
else:
loss_mask = criterionMSE(mask, label_obj[:, 0])
loss_image = criterionMSE(image, label_obj[:, 3:6])
loss_collision = criterionMSE(collision, label_rel)
losses_mask += np.sqrt(loss_mask.item())
losses_image += np.sqrt(loss_image.item())
loss = loss_mask * args.lam_mask
loss += loss_image * args.lam_image
if args.add_hw_state_flag or args.add_xyhw_state_flag:
loss_hw = criterionMSE(hw_pred, label_obj[:, 6:])
loss += loss_hw * args.lam_hw
losses_hw += np.sqrt(loss_hw.item())
losses_position += np.sqrt(loss_position.item())
losses_collision += np.sqrt(loss_collision.item())
loss += loss_position * args.lam_position
if args.edge_superv:
loss += loss_collision * args.lam_collision
losses += np.sqrt(loss.item())
#pdb.set_trace()
if phase == 'train':
if i % args.forward_times == 0:
if i != 0:
loss_acc /= args.forward_times
optimizer.zero_grad()
loss_acc.backward()
optimizer.step()
loss_acc = loss
else:
loss_acc += loss
if i % args.log_per_iter == 0:
log = '%s [%d/%d][%d/%d] Loss: %.6f %.6f %.6f %.6f %.6f, Agg: %.6f %.6f %.6f %.6f %.6f' % \
(phase, epoch, args.n_epoch, i, len(dataloaders[phase]),
np.sqrt(loss_mask.item()), np.sqrt(loss_position.item()),
np.sqrt(loss_image.item()), np.sqrt(loss_collision.item()),
np.sqrt(loss.item()),
losses_mask / (i + 1), losses_position / (i + 1),
losses_image / (i + 1), losses_collision / (i + 1),
losses / (i + 1))
print(log)
if args.add_hw_state_flag:
print('hw loss: %.6f, agg: %.6f' %(np.sqrt(loss_hw.item()), losses_hw/ (i+1)))
if phase == 'train' and i > 0 and i % args.ckp_per_iter == 0:
torch.save(model.state_dict(), '%s/net_epoch_%d_iter_%d.pth' % (args.outf, epoch, i))
losses /= len(dataloaders[phase])
log = '%s [%d/%d] Loss: %.4f, Best valid: %.4f' % \
(phase, epoch, args.n_epoch, losses, best_valid_loss)
print(log)
if phase == 'valid':
scheduler.step(losses)
if(losses < best_valid_loss):
best_valid_loss = losses
torch.save(model.state_dict(), '%s/net_best.pth' % (args.outf))