forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.hpp
executable file
·110 lines (90 loc) · 2.99 KB
/
common.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#pragma once
#include <NvInfer.h>
#include <cuda_runtime_api.h>
#include <assert.h>
#include <dirent.h>
#include <fstream>
#include <sstream>
#include <iostream>
#include <string>
#include <vector>
#include <map>
#include <algorithm>
#include <opencv2/opencv.hpp>
#include "./logging.h"
#include "./cuda_utils.h"
static Logger gLogger;
using namespace nvinfer1;
void loadWeights(const std::string file, std::map<std::string, Weights>& weightMap) {
std::cout << "Loading weights: " << file << std::endl;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file. please check if the .wts file path is right!!!!!!");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--) {
Weights wt{ DataType::kFLOAT, nullptr, 0 };
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x) {
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
}
static inline int read_files_in_dir(const char *p_dir_name, std::vector<std::string> &file_names) {
DIR *p_dir = opendir(p_dir_name);
if (p_dir == nullptr) {
return -1;
}
struct dirent* p_file = nullptr;
while ((p_file = readdir(p_dir)) != nullptr) {
if (strcmp(p_file->d_name, ".") != 0 &&
strcmp(p_file->d_name, "..") != 0) {
// std::string cur_file_name(p_dir_name);
// cur_file_name += "/";
// cur_file_name += p_file->d_name;
std::string cur_file_name(p_file->d_name);
file_names.push_back(cur_file_name);
}
}
closedir(p_dir);
return 0;
}
static inline cv::Mat preprocessImg(cv::Mat& img, int input_w, int input_h, int& X_LEFT_PAD, int& X_RIGHT_PAD, int& Y_TOP_PAD, int& Y_BOTTOM_PAD) {
int w, h;
float x, y;
float r_w = input_w / (img.cols*1.0);
float r_h = input_h / (img.rows*1.0);
// this code can also support left-right and top-bottom padding if you need
if (r_h > r_w) {
w = input_w;
h = r_w * img.rows;
x = 0.0;
y = (input_h - h) / 2.f;
} else {
w = r_h * img.cols;
h = input_h;
x = (input_w - w) / 2.f;
y = 0.0;
}
// support both odd and even cases
X_LEFT_PAD = (int)(round(x - 0.1));
X_RIGHT_PAD = (int)(round(x + 0.1));
Y_TOP_PAD = (int)(round(y - 0.1));
Y_BOTTOM_PAD = (int)(round(y + 0.1));
cv::Mat re(h, w, CV_8UC3);
cv::resize(img, re, re.size(), 0, 0, cv::INTER_LINEAR);
cv::Mat out(input_h, input_w, CV_8UC3, cv::Scalar(128, 128, 128));
re.copyTo(out(cv::Rect(X_LEFT_PAD, Y_TOP_PAD, re.cols, re.rows)));
return out;
}