Skip to content

Latest commit

 

History

History
200 lines (153 loc) · 8.38 KB

README.md

File metadata and controls

200 lines (153 loc) · 8.38 KB

YOLOv8

The Pytorch implementation is ultralytics/yolov8.

The tensorrt code is derived from xiaocao-tian/yolov8_tensorrt

Contributors

Requirements

  • TensorRT 8.0+
  • OpenCV 3.4.0+
  • ultralytics<=8.2.103

Different versions of yolov8

Currently, we support yolov8

Config

  • Choose the model n/s/m/l/x/n2/s2/m2/l2/x2/n6/s6/m6/l6/x6 from command line arguments.
  • Check more configs in include/config.h

How to Run, yolov8n as example

  1. generate .wts from pytorch with .pt, or download .wts from model zoo
// download https://github.com/ultralytics/assets/releases/yolov8n.pt
// download https://github.com/lindsayshuo/yolov8-p2/releases/download/VisDrone_train_yolov8x_p2_bs1_epochs_100_imgsz_1280_last.pt (only for 10 cls p2 model)
cp {tensorrtx}/yolov8/gen_wts.py {ultralytics}/ultralytics
cd {ultralytics}/ultralytics
python gen_wts.py -w yolov8n.pt -o yolov8n.wts -t detect
// a file 'yolov8n.wts' will be generated.


// For p2 model
// download https://github.com/lindsayshuo/yolov8_p2_tensorrtx/releases/download/VisDrone_train_yolov8x_p2_bs1_epochs_100_imgsz_1280_last/VisDrone_train_yolov8x_p2_bs1_epochs_100_imgsz_1280_last.pt (only for 10 cls p2 model)
cd {ultralytics}/ultralytics
python gen_wts.py -w VisDrone_train_yolov8x_p2_bs1_epochs_100_imgsz_1280_last.pt -o VisDrone_train_yolov8x_p2_bs1_epochs_100_imgsz_1280_last.wts -t detect (only for  10 cls p2 model)
// a file 'VisDrone_train_yolov8x_p2_bs1_epochs_100_imgsz_1280_last.wts' will be generated.

// For yolov8_5u_det model
// download https://github.com/ultralytics/assets/releases/yolov5nu.pt
cd {ultralytics}/ultralytics
python gen_wts.py -w yolov5nu.pt -o yolov5nu.wts -t detect
// a file 'yolov5nu.wts' will be generated.

  1. build tensorrtx/yolov8 and run

Detection

cd {tensorrtx}/yolov8/
mkdir build
cd build
cp {ultralytics}/ultralytics/yolov8.wts {tensorrtx}/yolov8/build
cmake ..
make
sudo ./yolov8_det -s [.wts] [.engine] [n/s/m/l/x/n2/s2/m2/l2/x2/n6/s6/m6/l6/x6]  // serialize model to plan file
sudo ./yolov8_det -d [.engine] [image folder]  [c/g] // deserialize and run inference, the images in [image folder] will be processed.

// For example yolov8n
sudo ./yolov8_det -s yolov8n.wts yolov8.engine n
sudo ./yolov8_det -d yolov8n.engine ../images c //cpu postprocess
sudo ./yolov8_det -d yolov8n.engine ../images g //gpu postprocess


// For p2 model:
// change the  "const static int kNumClass" in config.h to 10;
sudo ./yolov8_det -s VisDrone_train_yolov8x_p2_bs1_epochs_100_imgsz_1280_last.wts VisDrone_train_yolov8x_p2_bs1_epochs_100_imgsz_1280_last.engine x2
wget https://github.com/lindsayshuo/yolov8-p2/releases/download/VisDrone_train_yolov8x_p2_bs1_epochs_100_imgsz_1280_last/0000008_01999_d_0000040.jpg
cp -r 0000008_01999_d_0000040.jpg ../images
sudo ./yolov8_det -d VisDrone_train_yolov8x_p2_bs1_epochs_100_imgsz_1280_last.engine ../images c //cpu postprocess
sudo ./yolov8_det -d VisDrone_train_yolov8x_p2_bs1_epochs_100_imgsz_1280_last.engine ../images g //gpu postprocess

// For yolov8_5u_det(YOLOv5u with the anchor-free, objectness-free split head structure based on YOLOv8 features) model:
sudo ./yolov8_5u_det -s [.wts] [.engine] [n/s/m/l/x//n6/s6/m6/l6/x6]
sudo ./yolov8_5u_det -d yolov5xu.engine ../images c //cpu postprocess
sudo ./yolov8_5u_det -d yolov5xu.engine ../images g //gpu postprocess

Instance Segmentation

# Build and serialize TensorRT engine
./yolov8_seg -s yolov8s-seg.wts yolov8s-seg.engine s

# Download the labels file
wget -O coco.txt https://raw.githubusercontent.com/amikelive/coco-labels/master/coco-labels-2014_2017.txt

# Run inference with labels file
./yolov8_seg -d yolov8s-seg.engine ../images c coco.txt

Classification

cd {tensorrtx}/yolov8/
// Download inference images
wget  https://github.com/lindsayshuo/infer_pic/releases/download/pics/1709970363.6990473rescls.jpg
mkdir samples
cp -r  1709970363.6990473rescls.jpg samples
// Download ImageNet labels
wget https://github.com/joannzhang00/ImageNet-dataset-classes-labels/blob/main/imagenet_classes.txt

// update kClsNumClass in config.h if your model is trained on custom dataset
mkdir build
cd build
cp {ultralytics}/ultralytics/yolov8n-cls.wts {tensorrtx}/yolov8/build
cmake ..
make
sudo ./yolov8_cls -s [.wts] [.engine] [n/s/m/l/x]  // serialize model to plan file
sudo ./yolov8_cls -d [.engine] [image folder]  // deserialize and run inference, the images in [image folder] will be processed.

// For example yolov8n
sudo ./yolov8_cls -s yolov8n-cls.wts yolov8-cls.engine n
sudo ./yolov8_cls -d yolov8n-cls.engine ../samples

Pose Estimation

cd {tensorrtx}/yolov8/
// update "kPoseNumClass = 1" in config.h
mkdir build
cd build
cp {ultralytics}/ultralytics/yolov8-pose.wts {tensorrtx}/yolov8/build
cmake ..
make
sudo ./yolov8_pose -s [.wts] [.engine] [n/s/m/l/x/n2/s2/m2/l2/x2/n6/s6/m6/l6/x6]  // serialize model to plan file
sudo ./yolov8_pose -d [.engine] [image folder]  [c/g] // deserialize and run inference, the images in [image folder] will be processed.

// For example yolov8-pose
sudo ./yolov8_pose -s yolov8n-pose.wts yolov8n-pose.engine n
sudo ./yolov8_pose -d yolov8n-pose.engine ../images c //cpu postprocess
sudo ./yolov8_pose -d yolov8n-pose.engine ../images g //gpu postprocess

Oriented Bounding Boxes (OBB) Estimation

cd {tensorrtx}/yolov8/
// update "kObbNumClass = 15" "kInputH = 1024" "kInputW = 1024" in config.h
wget https://github.com/lindsayshuo/infer_pic/releases/download/pics/obb.png
mkdir images
mv obb.png ./images
mkdir build
cd build
cp {ultralytics}/ultralytics/yolov8-obb.wts {tensorrtx}/yolov8/build
cmake ..
make
sudo ./yolov8_obb -s [.wts] [.engine] [n/s/m/l/x/n2/s2/m2/l2/x2/n6/s6/m6/l6/x6]  // serialize model to plan file
sudo ./yolov8_obb -d [.engine] [image folder]  [c/g] // deserialize and run inference, the images in [image folder] will be processed.

// For example yolov8-obb
sudo ./yolov8_obb -s yolov8n-obb.wts yolov8n-obb.engine n
sudo ./yolov8_obb -d yolov8n-obb.engine ../images c //cpu postprocess
sudo ./yolov8_obb -d yolov8n-obb.engine ../images g //gpu postprocess
  1. optional, load and run the tensorrt model in python
// install python-tensorrt, pycuda, etc.
// ensure the yolov8n.engine and libmyplugins.so have been built
python yolov8_det_trt.py  # Detection
python yolov8_seg_trt.py  # Segmentation
python yolov8_cls_trt.py  # Classification
python yolov8_pose_trt.py  # Pose Estimation
python yolov8_5u_det_trt.py  # yolov8_5u_det(YOLOv5u with the anchor-free, objectness-free split head structure based on YOLOv8 features) model
python yolov8_obb_trt.py  # Oriented Bounding Boxes (OBB) Estimation

INT8 Quantization

  1. Prepare calibration images, you can randomly select 1000s images from your train set. For coco, you can also download my calibration images coco_calib from GoogleDrive or BaiduPan pwd: a9wh

  2. unzip it in yolov8/build

  3. set the macro USE_INT8 in config.h, change kInputQuantizationFolder into your image folder path and make

  4. serialize the model and test

More Information

See the readme in home page.