forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov8_obb_trt.py
571 lines (502 loc) · 21.4 KB
/
yolov8_obb_trt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
"""
An example that uses TensorRT's Python api to make inferences.
"""
import ctypes
import os
import shutil
import sys
import threading
import time
import cv2
import math
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
CONF_THRESH = 0.5
IOU_THRESHOLD = 0.4
POSE_NUM = 17 * 3
DET_NUM = 6
SEG_NUM = 32
OBB_NUM = 1
def get_img_path_batches(batch_size, img_dir):
ret = []
batch = []
for root, dirs, files in os.walk(img_dir):
for name in files:
if len(batch) == batch_size:
ret.append(batch)
batch = []
batch.append(os.path.join(root, name))
if len(batch) > 0:
ret.append(batch)
return ret
def regularize_rboxes(rboxes):
"""
Regularize rotated boxes in range [0, pi/2].
Args:
rboxes (numpy.ndarray): Input boxes of shape(N, 5) in xywhr format.
Returns:
(numpy.ndarray): The regularized boxes.
"""
x, y, w, h, t = np.split(rboxes, 5, axis=-1)
w_ = np.where(w > h, w, h)
h_ = np.where(w > h, h, w)
t = np.where(w > h, t, t + math.pi / 2) % math.pi
return np.concatenate([x, y, w_, h_, t], axis=-1) # regularized boxes
def xywhr2xyxyxyxy(x):
"""
Convert batched Oriented Bounding Boxes (OBB) from [xywh, rotation] to [xy1, xy2, xy3, xy4].
Args:
x (numpy.ndarray): Boxes in [cx, cy, w, h, rotation] format of shape (n, 5) or (b, n, 5).
Returns:
(numpy.ndarray): Converted corner points of shape (n, 4, 2) or (b, n, 4, 2).
"""
# Regularize the input boxes first
rboxes = regularize_rboxes(x)
ctr = rboxes[..., :2]
w, h, angle = (rboxes[..., i: i + 1] for i in range(2, 5))
cos_value = np.cos(angle)
sin_value = np.sin(angle)
vec1 = np.concatenate([w / 2 * cos_value, w / 2 * sin_value], axis=-1)
vec2 = np.concatenate([-h / 2 * sin_value, h / 2 * cos_value], axis=-1)
pt1 = ctr + vec1 + vec2
pt2 = ctr + vec1 - vec2
pt3 = ctr - vec1 - vec2
pt4 = ctr - vec1 + vec2
return np.stack([pt1, pt2, pt3, pt4], axis=-2)
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
"""
description: Plots one bounding box on image img,
this function comes from YoLov8 project.
param:
x: a box likes [x1,y1,x2,y2,angle]
img: a opencv image object
color: color to draw rectangle, such as (0,255,0)
label: str
line_thickness: int
return:
no return
"""
tl = (
line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1
) # line/font thickness
box = xywhr2xyxyxyxy(x).reshape(-1, 4, 2).squeeze()
p1 = [int(b) for b in box[0]]
# NOTE: cv2-version polylines needs np.asarray type.
cv2.polylines(img, [np.asarray(box, dtype=int)], True, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
w, h = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] # text width, height
outside = p1[1] - h >= 3
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
cv2.rectangle(img, p1, p2, color, -1, cv2.LINE_AA) # filled
cv2.putText(
img,
label,
(p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
0,
tl / 3,
[225, 255, 255],
thickness=tf,
lineType=cv2.LINE_AA,
)
class YoLov8TRT(object):
"""
description: A YOLOv8 class that warps TensorRT ops, preprocess and postprocess ops.
"""
def __init__(self, engine_file_path):
# Create a Context on this device,
self.ctx = cuda.Device(0).make_context()
stream = cuda.Stream()
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
runtime = trt.Runtime(TRT_LOGGER)
# Deserialize the engine from file
with open(engine_file_path, "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
host_inputs = []
cuda_inputs = []
host_outputs = []
cuda_outputs = []
bindings = []
for binding in engine:
print('bingding:', binding, engine.get_binding_shape(binding))
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
cuda_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(cuda_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
self.input_w = engine.get_binding_shape(binding)[-1]
self.input_h = engine.get_binding_shape(binding)[-2]
host_inputs.append(host_mem)
cuda_inputs.append(cuda_mem)
else:
host_outputs.append(host_mem)
cuda_outputs.append(cuda_mem)
# Store
self.stream = stream
self.context = context
self.engine = engine
self.host_inputs = host_inputs
self.cuda_inputs = cuda_inputs
self.host_outputs = host_outputs
self.cuda_outputs = cuda_outputs
self.bindings = bindings
self.batch_size = engine.max_batch_size
self.det_output_length = host_outputs[0].shape[0]
def infer(self, raw_image_generator):
threading.Thread.__init__(self)
# Make self the active context, pushing it on top of the context stack.
self.ctx.push()
# Restore
stream = self.stream
context = self.context
host_inputs = self.host_inputs
cuda_inputs = self.cuda_inputs
host_outputs = self.host_outputs
cuda_outputs = self.cuda_outputs
bindings = self.bindings
# Do image preprocess
batch_image_raw = []
batch_origin_h = []
batch_origin_w = []
batch_input_image = np.empty(shape=[self.batch_size, 3, self.input_h, self.input_w])
for i, image_raw in enumerate(raw_image_generator):
input_image, image_raw, origin_h, origin_w = self.preprocess_image(image_raw)
batch_image_raw.append(image_raw)
batch_origin_h.append(origin_h)
batch_origin_w.append(origin_w)
np.copyto(batch_input_image[i], input_image)
batch_input_image = np.ascontiguousarray(batch_input_image)
# Copy input image to host buffer
np.copyto(host_inputs[0], batch_input_image.ravel())
start = time.time()
# Transfer input data to the GPU.
cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream)
# Run inference.
context.execute_async(batch_size=self.batch_size, bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream)
# Synchronize the stream
stream.synchronize()
end = time.time()
# Remove any context from the top of the context stack, deactivating it.
self.ctx.pop()
# Here we use the first row of output in that batch_size = 1
output = host_outputs[0]
# Do postprocess
for i in range(self.batch_size):
result_boxes, result_scores, result_classid = self.post_process(
output[i * self.det_output_length: (i + 1) * self.det_output_length], batch_origin_h[i],
batch_origin_w[i]
)
# Draw rectangles and labels on the original image
for j in range(len(result_boxes)):
box = result_boxes[j]
np.random.seed(int(result_classid[j]))
color = [np.random.randint(0, 255) for _ in range(3)]
plot_one_box(
box,
batch_image_raw[i],
label="{}:{:.2f}".format(
categories[int(result_classid[j])], result_scores[j]
),
color=color,
line_thickness=1
)
return batch_image_raw, end - start
def destroy(self):
# Remove any context from the top of the context stack, deactivating it.
self.ctx.pop()
def get_raw_image(self, image_path_batch):
"""
description: Read an image from image path
"""
for img_path in image_path_batch:
yield cv2.imread(img_path)
def get_raw_image_zeros(self, image_path_batch=None):
"""
description: Ready data for warmup
"""
for _ in range(self.batch_size):
yield np.zeros([self.input_h, self.input_w, 3], dtype=np.uint8)
def preprocess_image(self, raw_bgr_image):
"""
description: Convert BGR image to RGB,
resize and pad it to target size, normalize to [0,1],
transform to NCHW format.
param:
input_image_path: str, image path
return:
image: the processed image
image_raw: the original image
h: original height
w: original width
"""
image_raw = raw_bgr_image
h, w, c = image_raw.shape
image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB)
# Calculate widht and height and paddings
r_w = self.input_w / w
r_h = self.input_h / h
if r_h > r_w:
tw = self.input_w
th = int(r_w * h)
tx1 = tx2 = 0
ty1 = int((self.input_h - th) / 2)
ty2 = self.input_h - th - ty1
else:
tw = int(r_h * w)
th = self.input_h
tx1 = int((self.input_w - tw) / 2)
tx2 = self.input_w - tw - tx1
ty1 = ty2 = 0
# Resize the image with long side while maintaining ratio
image = cv2.resize(image, (tw, th))
# Pad the short side with (128,128,128)
image = cv2.copyMakeBorder(
image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, None, (128, 128, 128)
)
image = image.astype(np.float32)
# Normalize to [0,1]
image /= 255.0
# HWC to CHW format:
image = np.transpose(image, [2, 0, 1])
# CHW to NCHW format
image = np.expand_dims(image, axis=0)
# Convert the image to row-major order, also known as "C order":
image = np.ascontiguousarray(image)
return image, image_raw, h, w
def xywh2xyxy(self, origin_h, origin_w, x):
"""
description: Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
param:
origin_h: height of original image
origin_w: width of original image
x: A boxes numpy, each row is a box [center_x, center_y, w, h]
return:
y: A boxes numpy, each row is a box [x1, y1, x2, y2]
"""
y = np.zeros_like(x)
r_w = self.input_w / origin_w
r_h = self.input_h / origin_h
if r_h > r_w:
y[:, 0] = x[:, 0]
y[:, 2] = x[:, 2]
y[:, 1] = x[:, 1] - (self.input_h - r_w * origin_h) / 2
y[:, 3] = x[:, 3] - (self.input_h - r_w * origin_h) / 2
y /= r_w
else:
y[:, 0] = x[:, 0] - (self.input_w - r_h * origin_w) / 2
y[:, 2] = x[:, 2] - (self.input_w - r_h * origin_w) / 2
y[:, 1] = x[:, 1]
y[:, 3] = x[:, 3]
y /= r_h
return y
def post_process(self, output, origin_h, origin_w):
"""
description: postprocess the prediction
param:
output: A numpy likes [num_boxes,cx,cy,w,h,conf,cls_id,angle cx,cy,w,h,conf,cls_id,angle ...]
origin_h: height of original image
origin_w: width of original image
return:
result_boxes: finally boxes, a boxes numpy, each row is a box [x1, y1, x2, y2, angle]
result_scores: finally scores, a numpy, each element is the score correspoing to box
result_classid: finally classid, a numpy, each element is the classid correspoing to box
"""
num_values_per_detection = DET_NUM + SEG_NUM + POSE_NUM + OBB_NUM
# Get the num of boxes detected
num = int(output[0])
# Reshape to a two dimentional ndarray
# pred = np.reshape(output[1:], (-1, 38))[:num, :]
pred = np.reshape(output[1:], (-1, num_values_per_detection))[:num, :]
# Do nms
boxes = self.non_max_suppression(pred, origin_h, origin_w,
conf_thres=CONF_THRESH, nms_thres=IOU_THRESHOLD)
columns_to_keep = [0, 1, 2, 3, 89]
result_boxes = boxes[:, columns_to_keep] if len(boxes) else np.array([])
result_scores = boxes[:, 4] if len(boxes) else np.array([])
result_classid = boxes[:, 5] if len(boxes) else np.array([])
return result_boxes, result_scores, result_classid
def covariance_matrix(self, boxes):
"""
description: Generating covariance matrix from obbs.
param:
boxes (np.ndarray): A numpy of shape (N, 5) representing rotated bounding boxes, with xywhr format.
return:
(np.ndarray): Covariance metrixs corresponding to original rotated bounding boxes.
"""
# Gaussian bounding boxes, ignore the center points (the first two columns) because they are not needed here.
widths = boxes[:, 2:3].reshape(-1)
heights = boxes[:, 3:4].reshape(-1)
angles = boxes[:, 4].reshape(-1)
a, b, c = (widths ** 2) / 12, (heights ** 2) / 12, angles
cos_angles = np.cos(c)
sin_angles = np.sin(c)
cos2 = cos_angles ** 2
sin2 = sin_angles ** 2
return a * cos2 + b * sin2, a * sin2 + b * cos2, (a - b) * cos_angles * sin_angles
def bbox_iou(self, box1, box2, x1y1x2y2=True):
"""
description: compute the IoU of two bounding boxes
param:
box1: A box coordinate (can be (x1, y1, x2, y2) or (x, y, w, h))
box2: A box coordinate (can be (x1, y1, x2, y2) or (x, y, w, h))
x1y1x2y2: select the coordinate format
return:
iou: computed iou
"""
if not x1y1x2y2:
# Transform from center and width to exact coordinates
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
else:
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
# Get the coordinates of the intersection rectangle
inter_rect_x1 = np.maximum(b1_x1, b2_x1)
inter_rect_y1 = np.maximum(b1_y1, b2_y1)
inter_rect_x2 = np.minimum(b1_x2, b2_x2)
inter_rect_y2 = np.minimum(b1_y2, b2_y2)
# Intersection area
inter_area = (np.clip(inter_rect_x2 - inter_rect_x1 + 1, 0, None)
* np.clip(inter_rect_y2 - inter_rect_y1 + 1, 0, None))
# Union Area
b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)
iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)
return iou
def batch_probiou(self, obb1, obb2, eps=1e-7):
"""
description: Calculate the prob IoU between oriented bounding boxes, https://arxiv.org/pdf/2106.06072v1.pdf.
param:
obb1 (np.ndarray): A numpy of shape (N, 5) representing ground truth obbs, with xywhr format.
obb2 (np.ndarray): A numpy of shape (M, 5) representing predicted obbs, with xywhr format.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
return:
iou: computed iou
"""
x1, y1 = obb1[:, 0], obb1[:, 1]
x2, y2 = obb2[:, 0], obb2[:, 1]
a1, b1, c1 = self.covariance_matrix(obb1)
a2, b2, c2 = self.covariance_matrix(obb2)
t1 = (
((a1 + a2) * (y1 - y2) ** 2 + (b1 + b2) * (x1 - x2) ** 2) /
((a1 + a2) * (b1 + b2) - (c1 + c2) ** 2 + eps)
) * 0.25
t2 = (
((c1 + c2) * (x2 - x1) * (y1 - y2)) /
((a1 + a2) * (b1 + b2) - (c1 + c2) ** 2 + eps)
) * 0.5
t3 = (
((a1 + a2) * (b1 + b2) - (c1 + c2) ** 2) /
(4 * (np.clip(a1 * b1 - c1 ** 2, 0, None) * np.clip(a2 * b2 - c2 ** 2, 0, None)) ** 0.5 + eps)
+ eps
)
t3 = np.log(t3) * 0.5
bd = np.clip(t1 + t2 + t3, eps, 100.0)
hd = np.sqrt(1.0 - np.exp(-bd) + eps)
return 1 - hd
def non_max_suppression(self, prediction, origin_h, origin_w, conf_thres=0.5, nms_thres=0.4):
"""
description: Removes detections with lower object confidence score than 'conf_thres' and performs
Non-Maximum Suppression to further filter detections.
param:
prediction: detections, (x1, y1, x2, y2, conf, cls_id, angle)
origin_h: original image height
origin_w: original image width
conf_thres: a confidence threshold to filter detections
nms_thres: a iou threshold to filter detections
return:
boxes: output after nms with the shape (x1, y1, x2, y2, conf, cls_id, angle)
"""
# Get the boxes that score > CONF_THRESH
boxes = prediction[prediction[:, 4] >= conf_thres]
col_idx = [0, 1, 2, 3, 89]
# Trandform bbox from [center_x, center_y, w, h] to [x1, y1, x2, y2]
boxes[:, :4] = self.xywh2xyxy(origin_h, origin_w, boxes[:, :4])
# clip the coordinates
boxes[:, 0] = np.clip(boxes[:, 0], 0, origin_w - 1)
boxes[:, 2] = np.clip(boxes[:, 2], 0, origin_w - 1)
boxes[:, 1] = np.clip(boxes[:, 1], 0, origin_h - 1)
boxes[:, 3] = np.clip(boxes[:, 3], 0, origin_h - 1)
# Object confidence
confs = boxes[:, 4]
# Sort by the confs
boxes = boxes[np.argsort(-confs)]
# Perform non-maximum suppression
keep_boxes = []
while boxes.shape[0]:
large_overlap = self.batch_probiou(np.expand_dims(boxes[0, col_idx], 0), boxes[:, col_idx]) > nms_thres
label_match = boxes[0, 5] == boxes[:, 5]
# Indices of boxes with lower confidence scores, large IOUs and matching labels
invalid = large_overlap & label_match
keep_boxes += [boxes[0]]
boxes = boxes[~invalid]
boxes = np.stack(keep_boxes, 0) if len(keep_boxes) else np.array([])
return boxes
class inferThread(threading.Thread):
def __init__(self, yolov8_wrapper, image_path_batch):
threading.Thread.__init__(self)
self.yolov8_wrapper = yolov8_wrapper
self.image_path_batch = image_path_batch
def run(self):
batch_image_raw, use_time = self.yolov8_wrapper.infer(self.yolov8_wrapper.get_raw_image(self.image_path_batch))
for i, img_path in enumerate(self.image_path_batch):
parent, filename = os.path.split(img_path)
save_name = os.path.join('output', filename)
# Save image
cv2.imwrite(save_name, batch_image_raw[i])
print('input->{}, time->{:.2f}ms, saving into output/'.format(self.image_path_batch, use_time * 1000))
class warmUpThread(threading.Thread):
def __init__(self, yolov8_wrapper):
threading.Thread.__init__(self)
self.yolov8_wrapper = yolov8_wrapper
def run(self):
batch_image_raw, use_time = self.yolov8_wrapper.infer(self.yolov8_wrapper.get_raw_image_zeros())
print('warm_up->{}, time->{:.2f}ms'.format(batch_image_raw[0].shape, use_time * 1000))
if __name__ == "__main__":
# load custom plugin and engine
PLUGIN_LIBRARY = "./build/libmyplugins.so"
engine_file_path = "yolov8n-obb.engine"
if len(sys.argv) > 1:
engine_file_path = sys.argv[1]
if len(sys.argv) > 2:
PLUGIN_LIBRARY = sys.argv[2]
ctypes.CDLL(PLUGIN_LIBRARY)
# load DOTAV 1.5 labels
categories = ["plane", "ship", "storage tank", "baseball diamond", "tennis court",
"basketball court", "ground track field", "harbor",
"bridge", "large vehicle", "small vehicle", "helicopter",
"roundabout", "soccer ball field", "swimming pool", "container crane"]
if os.path.exists('output/'):
shutil.rmtree('output/')
os.makedirs('output/')
# a YoLov8TRT instance
yolov8_wrapper = YoLov8TRT(engine_file_path)
try:
print('batch size is', yolov8_wrapper.batch_size)
image_dir = "images/"
image_path_batches = get_img_path_batches(yolov8_wrapper.batch_size, image_dir)
for i in range(10):
# create a new thread to do warm_up
thread1 = warmUpThread(yolov8_wrapper)
thread1.start()
thread1.join()
for batch in image_path_batches:
# create a new thread to do inference
thread1 = inferThread(yolov8_wrapper, batch)
thread1.start()
thread1.join()
finally:
# destroy the instance
yolov8_wrapper.destroy()