-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpre_cluster.py
142 lines (128 loc) · 5.07 KB
/
pre_cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from advent.model.backbones.resnet_backbone import ResNetBackbone
from advent.utils.helpers import initialize_weights
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import math , time
from itertools import chain
import contextlib
import random
from PIL import Image
from tqdm import tqdm
import numpy as np
import cv2
import torchvision.models as models
from torchvision import transforms
from sklearn.cluster import DBSCAN
from sklearn.cluster import MiniBatchKMeans, KMeans
from sklearn import metrics
import shutil
import random
import pickle
class NormalResnetBackbone(nn.Module):
def __init__(self, orig_resnet):
super(NormalResnetBackbone, self).__init__()
self.num_features = 2048
# take pretrained resnet, except AvgPool and FC
self.prefix = nn.Sequential(
orig_resnet.conv1,
orig_resnet.bn1,
orig_resnet.relu,
orig_resnet.maxpool
)
# self.maxpool = orig_resnet.maxpool
self.layer1 = orig_resnet.layer1
self.layer2 = orig_resnet.layer2
self.layer3 = orig_resnet.layer3
self.layer4 = orig_resnet.layer4
self.gap = orig_resnet.avgpool
def get_num_features(self):
return self.num_features
def forward(self, x):
x = self.prefix(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.gap(x)
return x
def clust_images(img_dir, root_dir, num_gp=40, sample_val=None, join_val=False):
# get imagenet feature
im_lst = os.listdir(img_dir)
if not os.path.isfile(os.path.join(root_dir, 'imgnet_fts.pkl')):
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
to_tensor = transforms.ToTensor()
norm = transforms.Normalize(mean, std)
resnet = models.resnet101(pretrained=True)
model = NormalResnetBackbone(resnet).cuda()
im_fts = []
for im in tqdm(im_lst):
image_path = os.path.join(img_dir, im)
image = np.asarray(Image.open(image_path), dtype=np.float32)
if image.shape[-1] > 3: # remove 4th layer of image, keep RGB
image = image[:,:,:3]
img = Image.fromarray(np.uint8(image)).resize((400, 300), Image.BICUBIC)
img = norm(to_tensor(img)).cuda().unsqueeze(0)
im_ft = model(img).squeeze().cpu().data.numpy()
im_fts.append(im_ft)
res = [im_lst, im_fts]
pickle.dump(res, open(os.path.join(root_dir, 'imgnet_fts.pkl'), 'wb'))
else:
res = pickle.load(open(os.path.join(root_dir, 'imgnet_fts.pkl'), 'rb'))
im_lst, im_fts = res
# clust
lb = KMeans(n_clusters=num_gp, random_state=0).fit(im_fts)
tmp_dir = os.path.join(root_dir, 'cluster_{}'.format(num_gp))
cluster_lst = os.path.join(root_dir, 'train_cluster{}.txt'.format(num_gp))
os.makedirs(tmp_dir, exist_ok=True)
gps = {}
for idx, im in tqdm(enumerate(im_lst)):
im_gp = lb.labels_[idx]
if im_gp in gps:
gps[im_gp].append(im)
else:
gps[im_gp] = [im]
# show clust result
shutil.copyfile(os.path.join(img_dir, im),
os.path.join(tmp_dir, '{}_{}'.format(im_gp, im)))
rst_lst, sp_val_lst = [], []
for key in gps: # write clust result to list for training
cur_gp_lst = gps[key]
lines = ['/JPEGImages/{x}.jpg /SegmentationClass/{x}.png {cls}'.format(x=name.split('.')[0], cls=key) for name in cur_gp_lst]
rst_lst += lines
if sample_val is not None:
sp_lines = random.sample(lines, int(len(lines) * sample_val))
sp_val_lst += sp_lines
with open(cluster_lst, 'w') as f:
for l in rst_lst:
f.write(l + '\n')
if sample_val is not None: # select validation list from clusts
val_list_f = os.path.join(root_dir, '{}val_cluster{}.txt'.format(root_dir.split('/')[-1], num_gp))
with open(val_list_f, 'w') as f:
for l in sp_val_lst:
f.write(l + '\n')
# sample validation list from groups
if join_val:
val_rate = 0.3
group_val = os.path.join(root_dir, 'val_{}.txt'.format(val_rate))
gps = {}
for idx, line in tqdm(enumerate(rst_lst)):
im_name = line.strip().split(' ')[0].split('/')[-1].split('.')[0]
im_gp = line.strip().split(' ')[-1]
if im_gp in gps:
gps[im_gp].append(line.strip())
else:
gps[im_gp] = [line.strip()]
with open(group_val, 'w') as f:
for gp in gps:
gp_imgs = gps[gp]
selected_imgs = random.sample(gp_imgs, k=int(len(gp_imgs) * val_rate))
for im in selected_imgs: # filter out unlabeled samples
tmp = os.path.join(root_dir, im.split(' ')[1][1:])
if os.path.exists(tmp):
f.write(im + '\n')
# # # select val from groups
# # gped_list = os.path.join(root_dir, 'train_cluster{}.txt'.format(num_gp))
# # rst_lst = open(gped_list, 'r').readlines()