-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtest_nerf.py
54 lines (40 loc) · 2.02 KB
/
test_nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
from nerf.provider import NeRFDataset
from nerf.utils import *
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--num_rays', type=int, default=4096)
parser.add_argument('--num_steps', type=int, default=128)
parser.add_argument('--upsample_steps', type=int, default=128)
parser.add_argument('--max_ray_batch', type=int, default=4096) # lower if OOM
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--ff', action='store_true', help="use fully-fused MLP")
parser.add_argument('--radius', type=float, default=2, help="assume the camera is located on sphere(0, radius))")
parser.add_argument('--bound', type=float, default=2, help="assume the scene is bounded in box(-size, size)")
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch (unstable now)")
opt = parser.parse_args()
print(opt)
if opt.ff:
assert opt.fp16, "fully-fused mode must be used with fp16 mode"
from nerf.network_ff import NeRFNetwork
elif opt.tcnn:
from nerf.network_tcnn import NeRFNetwork
else:
from nerf.network import NeRFNetwork
seed_everything(opt.seed)
model = NeRFNetwork(
encoding="hashgrid", encoding_dir="sphere_harmonics",
num_layers=2, hidden_dim=64, geo_feat_dim=15, num_layers_color=3, hidden_dim_color=64,
cuda_ray=opt.cuda_ray,
)
print(model)
trainer = Trainer('ngp', vars(opt), model, workspace=opt.workspace, fp16=opt.fp16, use_checkpoint='latest')
# save mesh
#trainer.save_mesh()
test_dataset = NeRFDataset(opt.path, 'test', radius=opt.radius, n_test=10)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1)
trainer.test(test_loader)