-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathtrain_il.py
114 lines (100 loc) · 4.67 KB
/
train_il.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import wandb
import hydra
from omegaconf import DictConfig, OmegaConf
import logging
import os
from pathlib import Path
import subprocess
import numpy as np
from stable_baselines3.common.utils import set_random_seed
from carla_gym.utils import config_utils
log = logging.getLogger(__name__)
@hydra.main(config_path='config', config_name='train_il')
def main(cfg: DictConfig):
set_random_seed(cfg.seed, using_cuda=False)
# caching dataset on the node
# make sure the first one is the bc (behavior cloning) dataset
bc_dataset_path = cfg.dagger_datasets[-1]
if os.path.isdir(bc_dataset_path):
log.info(f'Copying from {bc_dataset_path} to {cfg.cache_dir}')
subprocess.call(f'rsync -a --info=progress2 {bc_dataset_path} {cfg.cache_dir}', shell=True)
else:
try:
api = wandb.Api()
run = api.run(bc_dataset_path)
log.info(f'Downloading dataset from wandb run: {bc_dataset_path}')
all_hf = [f for f in run.files() if '.h5' in f.name]
for i, data_hf in enumerate(all_hf):
log.info(f'{i+1}/{len(all_hf)}: Downloading {data_hf.name} to {cfg.cache_dir}')
data_hf.download(replace=True, root=cfg.cache_dir)
except:
log.warning(f'Error downloading dataset from wandb run {bc_dataset_path}')
list_bc_h5 = list(Path(cfg.cache_dir).glob('expert/*.h5'))
n_ep_bc = len(list_bc_h5)
bc_size = sum(f.stat().st_size for f in list_bc_h5)
log.info(f'BC dataset {bc_dataset_path} size: {bc_size/1024**3:.2f}G')
# downloading dagger dataset and replace bc dataset
for path in cfg.dagger_datasets[:-1]:
delete_size = 0
if len(list_bc_h5) < 0.2*n_ep_bc:
log.warning(f'Not enough BC episode left ({len(list_bc_h5)}), discard dagger dataset {path}.')
# break for loop
break
else:
# pre delete 10% to save disk space
n_episode_pre_delete = int(min(n_ep_bc*0.1, len(list_bc_h5)-0.2*n_ep_bc))
for _ in range(n_episode_pre_delete):
f = list_bc_h5.pop(np.random.choice(len(list_bc_h5)))
delete_size += f.stat().st_size
log.info(f'Delete {f.name}')
f.unlink()
# download dagger dataset
dagger_size = 0
if os.path.isdir(path):
log.info(f'Copying from {path} to {cfg.cache_dir}')
subprocess.call(f'rsync -a --info=progress2 {path} {cfg.cache_dir}', shell=True)
dagger_size = sum(f.stat().st_size for f in Path(path).glob('*.h5'))
else:
try:
api = wandb.Api()
run = api.run(path)
log.info(f'Downloading dataset from wandb run: {path}')
all_hf = [f for f in run.files() if '.h5' in f.name]
for i, data_hf in enumerate(all_hf):
log.info(f'{i+1}/{len(all_hf)}: Downloading {data_hf.name} to {cfg.cache_dir}')
data_hf.download(replace=True, root=cfg.cache_dir)
dagger_size += data_hf.size
except:
log.warning(f'Error downloading dataset from wandb run {path}')
# delete the rest
while delete_size < dagger_size:
if len(list_bc_h5) < 0.2*n_ep_bc:
log.warning(f'Not enough BC episode left ({len(list_bc_h5)}), stop deleting expert dataset.')
# break while loop
break
else:
f = list_bc_h5.pop(np.random.choice(len(list_bc_h5)))
delete_size += f.stat().st_size
log.info(f'Delete {f.name}')
f.unlink()
bc_size = sum(f.stat().st_size for f in list_bc_h5)
log.info(f'BC dataset: {len(list_bc_h5)} episodes, {bc_size/1024**3:.2f}G. '
f'Dagger dataset {path}: {dagger_size/1024**3:.2f}G')
log.info(f"train_il.py working directory: {os.getcwd()}")
assert len(cfg.agent) == 1, 'Only one agent can be trained at one time.'
agent_name = next(iter(cfg.agent))
cfg_agent = cfg.agent[agent_name]
OmegaConf.save(config=cfg_agent, f='config_agent.yaml')
AgentClass = config_utils.load_entry_point(cfg_agent.entry_point)
agent = AgentClass('config_agent.yaml')
# init wandb: save config_agent
wandb.init(project=cfg.wb_project, name=cfg.wb_name, group=cfg.wb_group, notes=cfg.wb_notes, tags=cfg.wb_tags)
cfg_dict = OmegaConf.to_container(cfg)
cfg_dict['working_dir'] = os.getcwd()
wandb.config.update(cfg_dict)
wandb.save('.hydra/*')
wandb.save('config_agent.yaml')
agent.learn(cfg.cache_dir, cfg.train_epochs, cfg.reset_step)
if __name__ == '__main__':
main()
log.info("train_il.py DONE!")