-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1283.find-the-smallest-divisor-given-a-threshold.java
96 lines (87 loc) · 2.16 KB
/
1283.find-the-smallest-divisor-given-a-threshold.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
/*
* @lc app=leetcode id=1283 lang=java
*
* [1283] Find the Smallest Divisor Given a Threshold
*
* https://leetcode.com/problems/find-the-smallest-divisor-given-a-threshold/description/
*
* algorithms
* Medium (42.57%)
* Likes: 138
* Dislikes: 35
* Total Accepted: 10.6K
* Total Submissions: 24.4K
* Testcase Example: '[1,2,5,9]\n6'
*
* Given an array of integers nums and an integer threshold, we will choose a
* positive integer divisor and divide all the array by it and sum the result
* of the division. Find the smallest divisor such that the result mentioned
* above is less than or equal to threshold.
*
* Each result of division is rounded to the nearest integer greater than or
* equal to that element. (For example: 7/3 = 3 and 10/2 = 5).
*
* It is guaranteed that there will be an answer.
*
*
* Example 1:
*
*
* Input: nums = [1,2,5,9], threshold = 6
* Output: 5
* Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1.
* If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5
* the sum will be 5 (1+1+1+2).
*
*
* Example 2:
*
*
* Input: nums = [2,3,5,7,11], threshold = 11
* Output: 3
*
*
* Example 3:
*
*
* Input: nums = [19], threshold = 5
* Output: 4
*
*
*
* Constraints:
*
*
* 1 <= nums.length <= 5 * 10^4
* 1 <= nums[i] <= 10^6
* nums.length <= threshold <= 10^6
*
*/
// @lc code=start
// 1283. Find the Smallest Divisor Given a Threshold
// binary search value range
// pay attent to range selection,
class Solution {
public int smallestDivisor(int[] nums, int threshold) {
int l = 1;
int h = (int)1e9;
while (l + 1 < h) {
int mid = l + (h - l) / 2;
int sum = sumOfDivisor(nums, mid);
if (sum <= threshold) {
h = mid;
} else {
l = mid;
}
}
if (sumOfDivisor(nums, l) <= threshold) return l;
return h;
}
private int sumOfDivisor(int[] nums, int m) {
int sum = 0;
for (int i : nums)
sum += (i + m - 1) / m;
return sum;
}
}
// @lc code=end