-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdata_module.py
167 lines (135 loc) · 5.05 KB
/
data_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
import numpy as np
import pytorch_lightning as pl
import random
import librosa
from os.path import basename, exists, join
from torch.utils.data import Dataset, DataLoader
import hydra
import utils
import torchaudio
from transformers import AutoFeatureExtractor
from torchaudio.transforms import Resample
from tqdm import tqdm
from torchaudio.transforms import Resample
class DataModule(pl.LightningDataModule):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
ocwd = hydra.utils.get_original_cwd()
self.ocwd = ocwd
def get_loader(self, phase):
phase_cfg = self.cfg.dataset.get(phase)
batch_size = phase_cfg.batch_size
ds = FSDataset(phase, self.cfg)
# ds = FSDataset_add_STFT(phase, self.cfg)
dl = DataLoader(ds,
batch_size=batch_size,
shuffle=phase_cfg.shuffle,
num_workers=28,
collate_fn=ds.collate_fn,
pin_memory=True,
persistent_workers=True)
return dl
def train_dataloader(self):
return self.get_loader('train')
def val_dataloader(self):
return self.get_loader('val')
def test_dataloader(self):
pass
class FSDataset(Dataset):
"""Dataset batching wav, mel
and other acoustic features
Args:
phase: train, val, test
cfg: hydra config
"""
def __init__(self, phase, cfg):
self.phase = phase
self.cfg = cfg
self.phase_cfg = cfg.dataset.get(phase)
self.ocwd = hydra.utils.get_original_cwd()
self.sr = cfg.preprocess.audio.sr
# self.filelist = utils.read_filelist(join(self.ocwd, self.phase_cfg.filelist))
self.filelist = self.get_filelist(self.phase_cfg.filelist)
self.min_audio_length = cfg.dataset.min_audio_length
self.feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
def __len__(self):
return len(self.filelist)
def load_wav(self, path):
wav, sr = librosa.load(path, sr=self.sr)
return wav
def get_filelist(self, fpath):
with open(fpath, 'r') as f:
# flist = [l.strip() for l in f if l.strip()]
flist = [l.strip().split('\t')[0] for l in f if l.strip()]
return flist
def __getitem__(self, idx):
# ( wavpath,fid) = self.filelist[idx]
wavpath = self.filelist[idx]
wavpath_full = join(self.cfg.preprocess.datasets.LibriSpeech.root, wavpath)
# wav = self.load_wav(wavpath)
# wav = torch.from_numpy(wav)
wav,sr=torchaudio.load(wavpath_full)
if sr != 16000:
wav = Resample(sr, 16000)(wav)
wav = wav[0,:]
length = wav.shape[0]
# length = wav.shape[1]
if length < self.min_audio_length:
wav = F.pad(wav, (0, self.min_audio_length - length))
length = wav.shape[0]
i = random.randint(0, length-self.min_audio_length)
wav = wav[i:i+self.min_audio_length]
wav_pad = F.pad(wav, (160, 160))
feat = self.feature_extractor(wav_pad, sampling_rate=16000, return_tensors="pt") .data['input_features']
out = {
'wav': wav,
'feat': feat,
# 'paths': wavpath_full
}
return out
def collate_fn(self, bs):
wavs = [b['wav'] for b in bs]
wavs = torch.stack(wavs)
feats = [b['feat'] for b in bs]
feats = torch.stack(feats)
out = {
'wav': wavs,
'feats': feats,
# 'paths': [b['paths'] for b in bs]
}
return out
@hydra.main(config_path='config', config_name='default', version_base=None)
def main(cfg):
# 初始化DataModule
data_module = DataModule(cfg)
# 获取训练数据加载器
train_loader = data_module.val_dataloader()
# 用于保存无错误的音频路径
valid_filelist = []
# 遍历数据集
for batch_idx, batch in enumerate(tqdm(train_loader, desc="Processing batches", unit="batch")):
# try:
wavs = batch['wav']
# paths = batch['paths']
# print(f"Loaded batch {batch_idx + 1} with shape: {wavs.shape}")
# 将没有问题的路径保存到 valid_filelist
# valid_filelist.extend(paths)
# except Exception as e:
# # 如果遇到问题,打印错误信息和文件路径
# print(f"Error in batch {batch_idx + 1}: {e}")
# print(f"Paths in this batch: {batch['paths']}")
# 保存没有问题的音频文件列表到新的文件中
# with open('/aifs4su/data/zheny/data/data_8_21_2/mls_all_audio_path2.txt', 'w') as f:
# for item in valid_filelist:
# f.write(f"{item}\n")
c=1
print(f"Successfully saved valid filelist to 'valid_filelist.txt'")
if __name__ == "__main__":
main()