-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_document.py
384 lines (323 loc) · 16.9 KB
/
train_document.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os
import sys
import time
import csv
import argparse
import logging
from tqdm import tqdm
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from transformers import AutoTokenizer
from transformers import AutoModel
from transformers import AutoConfig
from ranking_dataset import LCEDatasetCausalLM, LCEDatasetMaskedLM, LCEDatasetSeq2SeqLM
from utils import read_ranklist, read_qrels, configure_eval_dataset
from utils import read_validset
from utils import get_eval_batch
from utils import flatten_concatenation
from utils import load_lce_triples
from utils import save_model
from utils import load_from_trained
def nested2device(model, device):
model.base_model = model.base_model.to(device)
model.regressor = model.regressor.to(device)
return model
def print_trainable_parameters(model):
all_params, trainable_params = 0, 0
for _, param in model.named_parameters():
num_params = param.numel()
all_params += num_params
if param.requires_grad:
trainable_params += num_params
print(f"trainable params: {trainable_params:,d} || all params: {all_params:,d} || trainable%: {100 * trainable_params / all_params}")
def configure_optimizer(model, disable_bias=False, lr=2e-5):
if disable_bias:
param_optimizer = list(model.named_parameters())
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
return torch.optim.AdamW(optimizer_grouped_parameters, lr=lr)
else:
return torch.optim.AdamW(model.parameters(), lr=lr)
def configure_model(model_name_or_path, tokenizer, args):
if "opt" in model_name_or_path:
from model import configure_opt_model
model = configure_opt_model(model_name_or_path, tokenizer, args)
elif "pythia" in model_name_or_path:
from model import configure_pythia_model
model = configure_pythia_model(model_name_or_path, tokenizer, args)
elif "gpt2" in model_name_or_path:
from model import configure_gpt2_model
model = configure_gpt2_model(model_name_or_path, tokenizer, args)
elif "mamba" in model_name_or_path:
from model import configure_mamba_model
model = configure_mamba_model(model_name_or_path, tokenizer, args)
elif "t5" in model_name_or_path:
from model import configure_t5_model
model = configure_t5_model(model_name_or_path, tokenizer, args)
elif "deberta" in model_name_or_path:
from model import configure_deberta_model
model = configure_deberta_model(model_name_or_path, tokenizer, args)
elif "bert" in model_name_or_path:
from model import configure_bert_model
model = configure_bert_model(model_name_or_path, tokenizer, args)
else:
raise Exception("unexpected model name")
return model
def configure_tokenizer(model_name_or_path):
p_prefix, q_prefix = configure_special_tokens(model_name_or_path)
if "opt" in model_name_or_path.lower() or "mamba" in model_name_or_path.lower() or "pythia" in model_name_or_path.lower():
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
tokenizer.padding_side = "left"
tokenizer.truncation_side = "right"
if tokenizer.pad_token is None:
tokenizer.pad_token_id, tokenizer.pad_token = tokenizer.eos_token_id, tokenizer.eos_token
else:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
new_tokens = [p_prefix, q_prefix]
tokenizer.add_tokens(list(new_tokens))
return tokenizer
def configure_special_tokens(model_name_or_path):
if "opt" in model_name_or_path.lower() or "mamba" in model_name_or_path.lower() or "pythia" in model_name_or_path.lower():
p_prefix = "Document: "
q_prefix = "Query: "
else:
p_prefix = "[passage]"
q_prefix = "[query]"
return p_prefix, q_prefix
def configure_model_and_tokenizer(model_name_or_path, args=None):
tokenizer = configure_tokenizer(model_name_or_path)
model = configure_model(model_name_or_path=model_name_or_path, tokenizer=tokenizer, args=args)
if not args.is_autoregressive:
model.base_model.resize_token_embeddings(len(tokenizer))
return tokenizer, model
def configure_training_dataset(args, collection, queries, dataset, tokenizer):
if "t5" in args.model_name_or_path:
return LCEDatasetSeq2SeqLM(collection=collection, queries=queries, dataset=lce_dataset, tokenizer=tokenizer, max_length=args.max_length)
elif args.is_autoregressive:
return LCEDatasetCausalLM(collection=collection, queries=queries, dataset=lce_dataset, tokenizer=tokenizer, max_length=args.max_length)
else:
return LCEDatasetMaskedLM(collection=collection, queries=queries, dataset=lce_dataset, tokenizer=tokenizer, max_length=args.max_length)
def get_scheduler(optimizer, scheduler: str, warmup_steps: int, t_total: int):
if scheduler == 'warmuplinear':
from transformers import get_linear_schedule_with_warmup
return get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total)
if scheduler == 'constant':
from transformers import get_constant_schedule
return get_constant_schedule(optimizer)
if scheduler == 'constantlinear':
from transformers import get_constant_schedule_with_warmup
return get_constant_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps)
def get_prediction(tokenizer, model, batch_input, args, device):
assert isinstance(batch_input, list), 'wrong input type, force exit!'
tokenized_input = format_test_batch(batch_input, tokenizer, args.is_autoregressive)
model = nested2device(model, device)
model = model.half()
with torch.no_grad():
logits = model.forward(input_ids=tokenized_input.input_ids.to(device), attention_mask=tokenized_input.attention_mask.to(device))
return logits.squeeze().cpu().tolist()
def format_test_batch(batch, tokenizer, is_autoregressive=True):
input_pretokenized = []
if "t5" in tokenizer.name_or_path:
sep_token = tokenizer.sep_token
bos_token = tokenizer.pad_token
for i, row in enumerate(batch):
input_pretokenized.append(bos_token+row[0]+row[1])
return tokenizer(input_pretokenized, padding=True, truncation=True, max_length=512, return_tensors="pt")
elif is_autoregressive:
for i, row in enumerate(batch):
document = tokenizer(row[1], truncation=True, max_length=768-50) # currently hardcoded
truncated_document = tokenizer.decode(document.input_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
input_pretokenized.append(truncated_document+"\n\n"+row[0]+tokenizer.eos_token)
return tokenizer(input_pretokenized, padding=True, truncation=True, max_length=768, return_tensors="pt")
else:
sep_token = tokenizer.sep_token
for i, row in enumerate(batch):
input_pretokenized.append(row[0]+sep_token+row[1])
return tokenizer(input_pretokenized, padding=True, truncation=True, max_length=512, return_tensors="pt")
def train_classification(
tokenizer,
model,
train_loader,
device,
optimizer,
args,
logger=None
):
total_training_steps = min(args.training_steps, len(train_loader)*args.epochs)
print(f"total training steps -> {total_training_steps}")
save_milestone = total_training_steps // 10
model_save_name = args.model_name_or_path.replace("/", "-")
warmup_steps = max(args.warmup_steps, int(total_training_steps*args.warmup_ratio))
scheduler = get_scheduler(optimizer, args.scheduler, args.warmup_steps, total_training_steps)
loss_fct = torch.nn.CrossEntropyLoss()
writer = SummaryWriter()
# check_model_parameters(model)
model = nested2device(model, device)
model.train()
train_steps = 0
accumulated_loss = 0.
flag = True
while flag:
for epoch_id in range(args.epochs):
if "t5" in model.config._name_or_path or "opt" in model.config._name_or_path or "pythia" in model.config._name_or_path:
scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
autocast_dtype = torch.bfloat16
else:
scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
autocast_dtype = torch.float16
for batch_idx, batch in tqdm(enumerate(train_loader), desc=f"training epoch {epoch_id+1}", disable=args.disable_tqdm):
if train_steps > total_training_steps:
flag = False
break
with torch.cuda.amp.autocast(dtype=autocast_dtype, enabled=args.fp16):
output = model(
input_ids=batch.input_ids.to(device),
attention_mask=batch.attention_mask.to(device),
)
logits = output.view(-1, args.lce_size) # by default this is set to 8, but can be changed to 16 as well
labels = torch.LongTensor([0]*logits.shape[0]).to(logits.device) # (bz)
loss = loss_fct(logits, labels)
writer.add_scalar("step loss", loss.item(), train_steps)
accumulated_loss += loss.item()
train_steps += 1
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
scheduler.step()
optimizer.zero_grad() # zero out the accumulated optimizer grad
if (train_steps) % 100 == 0:
print(f"\naverage loss -> {accumulated_loss/(train_steps):.2f}")
if train_steps % save_milestone == 0:
save_dest = os.path.join(args.save_dest, f'{model_save_name}_step_{train_steps}')
print(f"saving to {save_dest}")
save_model(model=model, save_dest=save_dest)
tokenizer.save_pretrained(save_dest)
save_dest = os.path.join(args.save_dest, f"{model_save_name}_step_{train_steps}")
print(f"saving to {save_dest}")
save_model(model=model, save_dest=save_dest)
tokenizer.save_pretrained(save_dest)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", type=str, required=True)
parser.add_argument("--tokenizer", type=str, required=True)
parser.add_argument("--t5_encoder", action="store_true", help="specify if using T5EncoderModel")
parser.add_argument("--load_from_trained", action="store_true", help="declare if we load from existing checkpoint")
parser.add_argument("--model_ckpt", type=str, help="use pytorch.bin if autoregressive model")
parser.add_argument("--input_dir", type=str, default="/home/zhichao/msmarco_document")
parser.add_argument("--triples", type=str, default="train_samples_lce.tsv")
parser.add_argument("--lce_size", type=int, default=8)
parser.add_argument('--experiment_root', type=str, default='./')
# model specifics
parser.add_argument('--num_labels', type=int, default=1)
parser.add_argument('--pooling_method', type=str, default='eos-pooling', choices=['mean-pooling','cls-pooling','eos-pooling'])
parser.add_argument('--flash_attention', action="store_true")
parser.add_argument('--lora', action="store_true")
parser.add_argument('--lora_r', type=int, default=64)
parser.add_argument('--lora_alpha', type=int, default=128)
# training specifics
parser.add_argument('--train_batch_size', type=int, default=16, help="total forward sequences is 8xbatch_size")
parser.add_argument('--epochs', type=int, default=1)
parser.add_argument('--training_steps', type=int, default=1e10)
parser.add_argument('--fp16', action='store_true')
parser.add_argument('--max_length', type=int, default=512)
# optimizer specifics
parser.add_argument('--lr', type=float, default=2e-5)
parser.add_argument('--weight_decay', type=float, default=1e-2)
parser.add_argument('--disable_bias', action="store_true")
parser.add_argument('--scheduler', type=str, default='warmuplinear')
parser.add_argument('--warmup_steps', type=int, default=1e3)
parser.add_argument('--warmup_ratio', type=float, default=0.1)
parser.add_argument('--do_train', action='store_true')
parser.add_argument('--do_eval', action='store_true')
parser.add_argument('--disable_tqdm', action='store_true')
parser.add_argument('--eval_dataset', type=str, help="choose from dev, dl19, dl20, separate with comma")
parser.add_argument('--eval_batch_size', type=int, default=128)
parser.add_argument('--ranklist', type=str, default='firstp.run')
parser.add_argument('--logger', type=str, default="default_logging.log")
args = parser.parse_args()
args.save_dest = os.path.join(args.experiment_root, "ckpt")
if "opt" in args.model_name_or_path.lower() or "pythia" in args.model_name_or_path.lower() or "mamba" in args.model_name_or_path.lower() or "gpt2" in args.model_name_or_path:
args.is_autoregressive = True
else:
args.is_autoregressive = False
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
filename=args.logger,
filemode='a',
)
logger = logging.getLogger(__name__)
logger.info("\n\n")
for k, v in vars(args).items():
logger.info(f"{k} -> {v}")
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer, model = configure_model_and_tokenizer(model_name_or_path=args.model_name_or_path, args=args)
print_trainable_parameters(model)
if args.load_from_trained:
assert args.model_ckpt is not None, "torch ckpt need to be specified if we load_from_trained"
_, model = load_from_trained(args=args, initialized_model=model)
print(f"loaded model ckpt from {args.model_ckpt}")
# prepare document collection
p_prefix, q_prefix = configure_special_tokens(args.model_name_or_path)
collection = {}
with open(os.path.join(args.input_dir, "collection.tsv"), 'r') as fin:
for line in tqdm(fin, desc="loading collection..."):
pid, passage = line.strip().split("\t")
collection[pid] = p_prefix+passage
fin.close()
if args.do_train:
queries = {}
with open(os.path.join(args.input_dir, "queries.train.tsv"), "r") as fin:
for line in tqdm(fin, desc="loading queries..."):
qid, query = line.strip().split("\t")
queries[qid] = q_prefix+query
fin.close()
lce_dataset = load_lce_triples(os.path.join(args.input_dir, args.triples))
trainset = configure_training_dataset(args=args, collection=collection, queries=queries, dataset=lce_dataset, tokenizer=tokenizer)
train_loader = torch.utils.data.DataLoader(
trainset,
shuffle=True,
batch_size=args.train_batch_size,
collate_fn=trainset.collate_fn,
num_workers=2,
pin_memory=True
)
optimizer = configure_optimizer(model, args.disable_bias, args.lr)
# start training
train_classification(
tokenizer=tokenizer,
model=model,
train_loader=train_loader,
device=DEVICE,
optimizer=optimizer,
args=args,
logger=logger
)
if args.do_eval:
eval_datasets = args.eval_dataset.split(",")
for eval_dataset in eval_datasets:
test_queries, bm25_ranklist = configure_eval_dataset(eval_dataset)
model.to(DEVICE)
with open(f"{eval_dataset}_{args.ranklist}", "w") as fout:
tsv_writer = csv.writer(fout, delimiter=" ")
model.eval()
for k, v in tqdm(bm25_ranklist.items(), desc='reranking...'):
doc_ids = v
query = test_queries[k]
scores = []
num_batch = len(v) // args.eval_batch_size + 1
for i in range(num_batch):
batch_doc_ids = v[i*args.eval_batch_size: (i+1)*args.eval_batch_size]
batch_docs = get_eval_batch(collection, batch_doc_ids)
batch_input = [[query, doc] for doc in batch_docs]
batch_scores = get_prediction(tokenizer, model, batch_input, args, DEVICE)
scores.extend(batch_scores)
sorted_idxes = np.argsort(scores)[::-1].tolist()
for i in range(len(doc_ids)):
tsv_writer.writerow([k, "Q0", v[sorted_idxes[i]], str(i+1), str(scores[sorted_idxes[i]]), "Reranking"])
fout.close()