-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
279 lines (214 loc) · 9.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#from __future__ import print_function
import argparse
import torch.optim as optim
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
import os
from tqdm import tqdm
from model.model import *
from evaluate.eval_metrics import evaluate
from Dataset import DeepSpeakerSoftmaxDataset,Testset
# from model.model import PairwiseDistance
from Dataset import totensor
from utils import *
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Speaker Recognition')
parser.add_argument('--dataroot', type=str, default='./data_aishell/wav/train',
help='path to dataset')
parser.add_argument('--resume',default=None,
type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--start-epoch', default=1, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--epochs', type=int, default=50, metavar='E',
help='number of epochs to train (default: 10)')
# Training options
parser.add_argument('--embedding-size', type=int, default=512, metavar='ES',
help='Dimensionality of the embedding')
parser.add_argument('--batch-size', type=int, default=512, metavar='BS',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=64, metavar='BST',
help='input batch size for testing (default: 64)')
parser.add_argument('--test-input-per-file', type=int, default=1, metavar='IPFT',
help='input sample per file for testing (default: 8)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.125)')
parser.add_argument('--lr-decay', default=1e-4, type=float, metavar='LRD',
help='learning rate decay ratio (default: 1e-4')
parser.add_argument('--optimizer', default='adagrad', type=str,
metavar='OPT', help='The optimizer to use (default: Adagrad)')
parser.add_argument('--seed', type=int, default=0, metavar='S',
help='random seed (default: 0)')
parser.add_argument('--log-interval', type=int, default=1, metavar='LI',
help='how many batches to wait before logging training status')
parser.add_argument('--mfb', action='store_true', default=True,
help='start from MFB file')
parser.add_argument('--makemfb', action='store_true', default=True,
help='need to make mfb file')
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
np.random.seed(args.seed)
if args.cuda:
cudnn.benchmark = True
ckpt_dir = r'./ckpt_baseline_0.5'
s = 20.0
m = 0.0
wd = 0.0002
is_dropout=False
is_random_flip=False
is_SEnet = True
is_FN = True
name = os.path.split(ckpt_dir)[1]
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
kwargs = {'num_workers': 0, 'pin_memory': True} if args.cuda else {}
# l2_dist = PairwiseDistance(2)
tongdun_train_dir = r'./aishell/data_aishell/wav/train'
tongdun_id_list = os.listdir(tongdun_train_dir)
transform = transforms.Compose([totensor()])
def create_optimizer(model, new_lr):
# setup optimizer
if args.optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=new_lr,
momentum=0.9, dampening=0.9,
weight_decay=wd)
elif args.optimizer == 'adam':
optimizer = optim.Adam(model.parameters(), lr=new_lr,
weight_decay=wd)
elif args.optimizer == 'adagrad':
optimizer = optim.Adagrad(model.parameters(),
lr=new_lr,
lr_decay=args.lr_decay,
weight_decay=wd)
return optimizer
def main_train():
train_dir = DeepSpeakerSoftmaxDataset(dir_list=tongdun_id_list, root_dir=args.dataroot, transform=transform,is_random_flip=is_random_flip)
# print the experiment configuration
print('\nparsed options:\n{}\n'.format(vars(args)))
print('\nNumber of Classes:\n{}\n'.format(len(train_dir.classes)))
# instantiate model and initialize weights
model = DeepSpeakerModel(embedding_size=args.embedding_size, num_classes=340, ratio=0.5, is_fn=is_FN, is_dropout=is_dropout, is_SEnet=is_SEnet)
print(model)
if args.cuda:
model.cuda()
optimizer = create_optimizer(model, args.lr)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print('=> loading checkpoint {}'.format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
else:
print('=> no checkpoint found at {}'.format(args.resume))
start = args.start_epoch
end = start + args.epochs
train_loader = torch.utils.data.DataLoader(train_dir, batch_size=args.batch_size, shuffle=False, **kwargs)
for epoch in range(start, end):
train_softmax(train_loader, model, optimizer, epoch)
def train_softmax(train_loader, model, optimizer, epoch):
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
criterion = AMSoftmax()
pbar = tqdm(enumerate(train_loader))
for batch_idx, (data,label) in pbar:
data= data.cuda()
data_var= Variable(data)
label = label.cuda()
label_var = Variable(label)
# compute output
out_fea, out_cls= model(data_var)
# if epoch > args.min_softmax_epoch:
loss = criterion(out_cls, label_var, scale = s, margin = m)
prec1, prec5 = accuracy(out_cls.data, label, topk=(1, 5))
top1.update(prec1[0], data.size(0))
top5.update(prec5[0], data.size(0))
# compute gradient and update weights
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
pbar.set_description(name+' Train Epoch: {:3d} [{:8d}/{:8d} ({:3.0f}%)]\tLoss: {:.6f}\tacc: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),loss.data[0],
top1.avg))
# do checkpointing
torch.save({'epoch': epoch + 1, 'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()},
'{}/checkpoint_{}.pth'.format(ckpt_dir, epoch))
def main_test(test_ckpt_dir, start, end):
print(os.path.split(test_ckpt_dir)[1])
pairs_path = r'test_pairs.txt'
test_dir = Testset(pairs_path, transform=transform)
# # instantiate model and initialize weights
model = DeepSpeakerModel(embedding_size=args.embedding_size, num_classes=340,ratio=0.5, is_fn=True, is_SEnet=is_SEnet)
print(model)
test_loader = torch.utils.data.DataLoader(test_dir, batch_size=1, shuffle=False, **kwargs)
if args.cuda:
model.cuda()
max_acc = 0.0
max_epoch = 0
for epoch in range(start, end):
args.resume = os.path.join(test_ckpt_dir, 'checkpoint_' + str(epoch) + '.pth')
if args.resume:
if os.path.isfile(args.resume):
# print('=> loading checkpoint {}'.format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
else:
print('=> no checkpoint found at {}'.format(args.resume))
acc = val(test_loader, model, epoch)
if acc > max_acc:
max_acc = acc
max_epoch = epoch
print('max acc: ', max_acc)
print('max epoch: ', max_epoch)
# break
def val(test_loader, model, epoch):
from numpy import linalg as LA
def ConsinDistance(feaV1, feaV2):
return np.dot(feaV1, feaV2) / (LA.norm(feaV1) * LA.norm(feaV2))
# switch to evaluate mode
model.eval()
labels, distances, distances_flip = [], [], []
fea1, fea2 = [], []
for batch_idx, (data_a_list, data_p_list,data_a_flip_list, data_p_flip_list, label) in enumerate(test_loader):
label = Variable(label)
labels.append(label.data.cpu().numpy())
def cal_test_fea(a_list, p_list):
data_a = torch.cat(a_list, 0)
data_p = torch.cat(p_list, 0)
current_sample = 10
data_a = data_a.resize_(current_sample, 1, data_a.size(2), data_a.size(3))
data_p = data_p.resize_(current_sample, 1, data_a.size(2), data_a.size(3))
if args.cuda:
data_a, data_p = data_a.cuda(), data_p.cuda()
data_a = Variable(data_a, volatile=True)
data_p = Variable(data_p, volatile=True)
# compute output
out_a, out_p = model(data_a), model(data_p)
out_a = out_a[0].data.cpu().numpy()
out_p = out_p[0].data.cpu().numpy()
a = np.sum(out_a, axis=0)
p = np.sum(out_p, axis=0)
return a, p
a, p = cal_test_fea(data_a_list, data_p_list)
dists = 1.0 - (ConsinDistance(a, p) + 1.0)/2.0
dists = dists.reshape(1,1).mean(axis=1)
distances.append(dists)
labels = np.array([sublabel for label in labels for sublabel in label])
distances = np.array([subdist for dist in distances for subdist in dist])
tpr, fpr, accuracy, val, far = evaluate(distances, labels)
print('Test Epoch: ', epoch)
print('\33[91mTest set: Accuracy: {:.8f}\n\33[0m'.format(np.mean(accuracy)))
return np.mean(accuracy)
if __name__ == '__main__':
# os.environ['CUDA_VISIBLE_DEVICES'] = '1'
main_train()
# main_test(r'./ckpt_baseline_0.5_s20_m0.0_wd0.0_fn_input_64_SE', 20, 50)