-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
591 lines (472 loc) · 26.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
"""HMRN model"""
from turtle import forward
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from torch.nn.utils.clip_grad import clip_grad_norm_
import numpy as np
from collections import OrderedDict
def l2norm(X, dim=-1, eps=1e-8):
"""L2-normalize columns of X"""
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
X = torch.div(X, norm)
return X
class EncoderImage(nn.Module):
"""
Build region representations by common-used FC-layer.
Args: - images: raw regions, shape: (batch_size, 36, 2048).
Returns: - img_emb: final region embeddings, shape: (batch_size, 36, embed_size).
"""
def __init__(self, opt, img_dim, embed_size, no_imgnorm=False):
super(EncoderImage, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.fc = nn.Linear(img_dim, embed_size)
self.init_weights()
def init_weights(self):
"""Xavier initialization for the fully connected layer"""
r = np.sqrt(6.) / np.sqrt(self.fc.in_features +
self.fc.out_features)
self.fc.weight.data.uniform_(-r, r)
self.fc.bias.data.fill_(0)
def forward(self, images):
"""Extract image feature vectors."""
# assuming that the precomputed features are already l2-normalized
img_emb = self.fc(images)
# normalize in the joint embedding space
if not self.no_imgnorm:
img_emb = l2norm(img_emb, dim=-1)
return img_emb
def load_state_dict(self, state_dict):
"""Overwrite the default one to accept state_dict from Full model"""
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImage, self).load_state_dict(new_state)
class EncoderText(nn.Module):
"""
Build caption representations by common-used Bi-GRU.
Args: - captions: raw caption ids, shape: (batch_size, max_turns, L).
Returns: - cap_emb: final caption embeddings, shape: (batch_size, max_turns, embed_size).
"""
def __init__(self, opt, vocab_size, word_dim, embed_size, num_layers,
use_bi_gru=False, no_txtnorm=False):
super(EncoderText, self).__init__()
self.embed_size = embed_size
self.no_txtnorm = no_txtnorm
# word embedding
self.embed = nn.Embedding(vocab_size, word_dim)
self.dropout = nn.Dropout(0.4)
# caption embedding
self.use_bi_gru = use_bi_gru
self.cap_rnn = nn.GRU(word_dim, embed_size, num_layers, batch_first=True, bidirectional=use_bi_gru)
self.init_weights()
def init_weights(self):
self.embed.weight.data.uniform_(-0.1, 0.1)
def forward(self, captions, captions_msks):
"""Handles variable size captions, output fixed-dimension features"""
'''
Args: - captions, shape(batch_size, max_turns, max_length)
- lengths, shape(batch_size, max_turns)
'''
# embed word ids to vectors (hacky clamp)
bsize, max_turns, nwords = captions.size()
captions = captions.view((-1, nwords))
captions_msks=captions_msks.view(-1, nwords)
lengths = torch.sum(captions_msks, -1).clamp(min=1).long()
sorted_lengths, sorted_indices = torch.sort(lengths, descending=True)
_, unsorted_indices = torch.sort(sorted_indices)
cap_emb = self.embed(captions[sorted_indices])
cap_emb = self.dropout(cap_emb)
# pack the caption
packed = pack_padded_sequence(cap_emb, sorted_lengths, batch_first=True)
# forward propagate RNN
out, _ = self.cap_rnn(packed)
# reshape output to (batch_size, hidden_size)
cap_emb, _ = pad_packed_sequence(out, batch_first=True)
if self.use_bi_gru:
cap_emb = (cap_emb[:, :, :cap_emb.size(2)//2] + cap_emb[:, :, cap_emb.size(2)//2:])/2
# normalization in the joint embedding space
if not self.no_txtnorm:
cap_emb = l2norm(cap_emb, dim=-1)
cap_emb = cap_emb[unsorted_indices]
I = lengths.view(-1, 1, 1).cuda()
I = I.expand(cap_emb.size(0), 1, self.embed_size) - 1
last_feat = torch.gather(cap_emb, 1, I).squeeze(1)
last_feat = last_feat.view(bsize, max_turns, self.embed_size)
lengths = lengths.view(bsize, max_turns)
return last_feat, lengths
class VisualSA(nn.Module):
"""
Build global image representations by self-attention.
Args: - local: local region embeddings, shape: (batch_size, 36, embed_size)
- raw_global: raw image by averaging regions, shape: (batch_size, embed_size)
Returns: - new_global: final image by self-attention, shape: (batch_size, embed_size).
"""
def __init__(self, embed_dim, dropout_rate, num_region):
super(VisualSA, self).__init__()
self.embedding_local = nn.Sequential(nn.Linear(embed_dim, embed_dim),
nn.BatchNorm1d(num_region),
nn.Tanh(), nn.Dropout(dropout_rate))
self.embedding_global = nn.Sequential(nn.Linear(embed_dim, embed_dim),
nn.BatchNorm1d(embed_dim),
nn.Tanh(), nn.Dropout(dropout_rate))
self.embedding_common = nn.Sequential(nn.Linear(embed_dim, 1))
self.init_weights()
self.softmax = nn.Softmax(dim=1)
def init_weights(self):
for embeddings in self.children():
for m in embeddings:
if isinstance(m, nn.Linear):
r = np.sqrt(6.) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, local, raw_global):
# compute embedding of local regions and raw global image
l_emb = self.embedding_local(local)
g_emb = self.embedding_global(raw_global)
# compute the normalized weights, shape: (batch_size, 36)
g_emb = g_emb.unsqueeze(1).repeat(1, l_emb.size(1), 1)
common = l_emb.mul(g_emb)
weights = self.embedding_common(common).squeeze(2)
weights = self.softmax(weights)
# compute final image, shape: (batch_size, embed_size)
new_global = (weights.unsqueeze(2) * local).sum(dim=1)
new_global = l2norm(new_global, dim=-1)
return new_global
class TextSA(nn.Module):
"""
Build global text representations by self-attention.
Args: - local: caption embeddings, shape: (batch_size, max_turns, embed_size)
- raw_global: raw text by averaging captions, shape: (batch_size, embed_size)
Returns: - new_global: final text by self-attention, shape: (batch_size, embed_size).
"""
def __init__(self, embed_dim, dropout_rate):
super(TextSA, self).__init__()
self.embedding_local = nn.Sequential(nn.Linear(embed_dim, embed_dim),
nn.Tanh(), nn.Dropout(dropout_rate))
self.embedding_global = nn.Sequential(nn.Linear(embed_dim, embed_dim),
nn.Tanh(), nn.Dropout(dropout_rate))
self.embedding_common = nn.Sequential(nn.Linear(embed_dim, 1))
self.init_weights()
self.softmax = nn.Softmax(dim=1)
def init_weights(self):
for embeddings in self.children():
for m in embeddings:
if isinstance(m, nn.Linear):
r = np.sqrt(6.) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, local, raw_global):
# compute embedding of captions and raw global text
l_emb = self.embedding_local(local)
g_emb = self.embedding_global(raw_global)
# compute the normalized weights
g_emb = g_emb.unsqueeze(1).repeat(1, l_emb.size(1), 1)
common = l_emb.mul(g_emb)
weights = self.embedding_common(common).squeeze(2)
weights = self.softmax(weights)
# compute final text, shape: (batch_size, embed_size)
new_global = (weights.unsqueeze(2) * local).sum(dim=1)
new_global = l2norm(new_global, dim=-1)
return new_global
class InterCorrelationReasoning(nn.Module):
"""
Perform the inter-correlation reasoning with a full-connected graph
Args: - sim_emb: intra-correlation vector, shape: (batch_size, max_turns + 1, embed_size)
Returns; - sim_icr: inter-correlation reasoned graph nodes, shape: (batch_size, max_turns + 1, embed_size)
"""
def __init__(self, sim_dim):
super(InterCorrelationReasoning, self).__init__()
self.graph_query_w = nn.Linear(sim_dim, sim_dim)
self.graph_key_w = nn.Linear(sim_dim, sim_dim)
self.sim_graph_w = nn.Linear(sim_dim, sim_dim)
self.relu = nn.ReLU()
self.init_weights()
def forward(self, sim_emb):
sim_query = self.graph_query_w(sim_emb)
sim_key = self.graph_key_w(sim_emb)
sim_edge = torch.softmax(torch.bmm(sim_query, sim_key.permute(0, 2, 1)), dim=-1)
sim_icr = torch.bmm(sim_edge, sim_emb)
sim_icr = self.relu(self.sim_graph_w(sim_icr))
return sim_icr
def init_weights(self):
for m in self.children():
if isinstance(m, nn.Linear):
r = np.sqrt(6.) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class EncoderSimilarity(nn.Module):
"""
Compute the image-text similarity by scalar-based matching and vector-based reasoning
Args: - img_emb: local region embeddings, shape: (batch_size, 36, embed_size)
- cap_emb: local caption embeddings, shape: (batch_size, max_turns, embed_size)
Returns:
- sim_lm: local-level matching similarity for each round (I-T branch or T-I branch), shape: (batch_size, batch_size, max_turns)
- sim_gm: global-level matching similarity, shape: (batch_size, batch_size)
- sim_vr: vector-based reasoning similarity, shape: (batch_size, batch_size)
"""
def __init__(self, opt, embed_size, sim_dim, icr_step=3):
super(EncoderSimilarity, self).__init__()
self.opt = opt
self.v_global_w = VisualSA(embed_size, 0.4, 36)
self.t_global_w = TextSA(embed_size, 0.4)
self.sim_tranloc_w = nn.Linear(embed_size, sim_dim)
self.sim_tranglo_w = nn.Linear(embed_size, sim_dim)
self.sim_w = nn.Linear(sim_dim, 1)
self.sigmoid = nn.Sigmoid()
self.ICR_module = nn.ModuleList([InterCorrelationReasoning(sim_dim) for i in range(icr_step)])
self.init_weights()
def compute_pairwise_similarity(self, src_feats, tgt_feats):
sim = torch.bmm(tgt_feats, src_feats.transpose(1, 2))
sim = nn.LeakyReLU(0.1)(sim)
return sim
def pairwise_similarity_to_attn(self, pairwise_similarities, temperature_lambda):
attn = temperature_lambda * pairwise_similarities.clamp(min=-1e10)
attn = attn - torch.max(attn, dim=-1, keepdim=True)[0]
attn = F.softmax(attn, dim=-1)
return attn
def forward(self, img_emb, cap_emb, cap_lens):
bsize, n_regions, embed_size = img_emb.size()
bsize, max_turns, embed_size = cap_emb.size()
# compute_batch_mutual_similarity
# select cross-attention directions, i.e., I-T or T-I
if self.opt.cross_attention_direction == 'I-T':
# i2t
region_feats = img_emb.view(1, bsize, n_regions, embed_size)
region_feats = region_feats.expand(bsize, bsize, n_regions, embed_size).contiguous()
region_feats = region_feats.view(bsize, bsize * n_regions, embed_size).contiguous()
# attended similarity on queries
sim_AllRound_region = torch.zeros(bsize, bsize, max_turns).cuda()
for i in range(max_turns):
cap_emb_i = cap_emb[:, :i+1, :]
sim_region = self.compute_pairwise_similarity(cap_emb_i, region_feats)
attn_region = self.pairwise_similarity_to_attn(sim_region, self.opt.temperature_lambda_i2t)
sim_CurrentRound_region = torch.sum(sim_region * attn_region, dim=-1)
sim_CurrentRound_region = sim_CurrentRound_region.view(bsize, bsize, n_regions)
sim_CurrentRound_region = torch.mean(sim_CurrentRound_region, -1)
sim_AllRound_region[:, :, i] = sim_CurrentRound_region
elif self.opt.cross_attention_direction == 'T-I':
# t2i
query_feats = cap_emb.view(1, bsize, max_turns, embed_size)
query_feats = query_feats.expand(bsize, bsize, max_turns, embed_size).contiguous()
query_feats = query_feats.view(bsize, bsize * max_turns, embed_size).contiguous()
# attended similarity on regions
sim_query = self.compute_pairwise_similarity(img_emb, query_feats)
attn_query = self.pairwise_similarity_to_attn(sim_query, self.opt.temperature_lambda_t2i)
sim_all_query = torch.sum(sim_query * attn_query, dim=-1)
sim_all_query = sim_all_query.view(bsize, bsize, max_turns)
else:
print('cross attention direction error!')
# get enhanced global images by self-attention
img_ave = torch.mean(img_emb, 1)
img_glo = self.v_global_w(img_emb, img_ave)
# get enhanced global captions by self-attention
cap_ave = torch.mean(cap_emb, 1)
cap_glo = self.t_global_w(cap_emb, cap_ave)
# compute batch global similarity
sim_gm = torch.mm(img_glo, cap_glo.t())
sim_vr = []
for i in range(bsize):
cap_i = cap_emb[i, :, :].unsqueeze(0)
cap_i_expand = cap_i.repeat(bsize, 1, 1)
cap_glo_i = cap_glo[i, :].unsqueeze(0)
Context_img = SCAN_attention(cap_i_expand, img_emb, self.opt.temperature_lambda_t2i)
sim_loc = torch.pow(torch.sub(Context_img, cap_i_expand), 2)
sim_loc = l2norm(self.sim_tranloc_w(sim_loc), dim=-1)
sim_glo = torch.pow(torch.sub(img_glo, cap_glo_i), 2)
sim_glo = l2norm(self.sim_tranglo_w(sim_glo), dim=-1)
# concat global and local region-query intra-correlation vectors
sim_emb = torch.cat([sim_glo.unsqueeze(1), sim_loc], 1)
# inter-correlation reasoning
for module in self.ICR_module:
sim_emb = module(sim_emb)
sim_vec = sim_emb[:, 0, :]
# compute the final high-level reasoning similarity
sim_i = self.sigmoid(self.sim_w(sim_vec))
sim_vr.append(sim_i)
sim_vr = torch.cat(sim_vr, 1)
# compute final similarity. The N-th round similarity is obtained by averaging N respective similarities.
if self.opt.cross_attention_direction == 'I-T':
# similarity calculation for I2T branch
sim_lm = sim_AllRound_region
elif self.opt.cross_attention_direction == 'T-I':
# similarity calculation for T2I branch
sim_lm = sim_all_query
sim_temp = torch.zeros(bsize, bsize, max_turns).cuda()
for i in range(sim_lm.size(-1)):
sim_temp[:, :, i] = torch.mean(sim_lm[:, :, 0 : i+1], dim = -1)
sim_lm = sim_temp
else:
print('cross attention direction error!')
return sim_lm, sim_gm, sim_vr
def init_weights(self):
for m in self.children():
if isinstance(m, nn.Linear):
r = np.sqrt(6.) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def SCAN_attention(query, context, temperature_lambda_t2i, eps=1e-8):
"""
query: (n_context, queryL, d), (bsize, current_caption_length, embed_size)
context: (n_context, sourceL, d), (bsize, 36, embed_size)
"""
# --> (batch, d, queryL)
queryT = torch.transpose(query, 1, 2)
# (batch, sourceL, d)(batch, d, queryL)
# --> (batch, sourceL, queryL)
attn = torch.bmm(context, queryT)
attn = nn.LeakyReLU(0.1)(attn)
attn = l2norm(attn, 2)
# --> (batch, queryL, sourceL)
attn = torch.transpose(attn, 1, 2).contiguous()
# --> (batch, queryL, sourceL)
attn = F.softmax(attn * temperature_lambda_t2i, dim=2)
# --> (batch, sourceL, queryL)
attnT = torch.transpose(attn, 1, 2).contiguous()
# --> (batch, d, sourceL)
contextT = torch.transpose(context, 1, 2)
# (batch x d x sourceL)(batch x sourceL x queryL)
# --> (batch, d, queryL)
weightedContext = torch.bmm(contextT, attnT)
# --> (batch, queryL, d)
weightedContext = torch.transpose(weightedContext, 1, 2)
weightedContext = l2norm(weightedContext, dim=-1)
return weightedContext
class infoNCELoss(nn.Module):
def __init__(self, tau=1):
super(infoNCELoss, self).__init__()
self.tau = tau
def forward(self, scores):
bsize, bsize = scores.size()
scores = self.tau * scores.clamp(min=-1e10)
d1 = F.log_softmax(scores, dim=1)
d2 = F.log_softmax(scores, dim=0)
loss_s = torch.sum(d1.diag())
loss_im = torch.sum(d2.diag())
loss_infoNCE = -1 * (loss_s + loss_im) / bsize
return loss_infoNCE
class ComputeFinalLoss(nn.Module):
def __init__(self, opt, alpha=0.6, beta=0.3):
super(ComputeFinalLoss, self).__init__()
self.alpha = alpha
self.beta = beta
self.criterion = infoNCELoss(tau=opt.tau)
def forward(self, sim_lm, sim_gm, sim_vr):
bsize, bsize, max_turns = sim_lm.size()
# compute infoNCE loss
# calculate local-level matching loss for each round
loss_lm_infoNCE = [self.criterion(sim_lm[:, :, 0])]
if max_turns > 1:
for i in range(1, max_turns):
loss_lm_infoNCE.append(self.criterion(sim_lm[:, :, i]))
loss_lm_infoNCE = torch.stack(loss_lm_infoNCE, -1)
loss_lm_infoNCE = torch.mean(loss_lm_infoNCE, -1)
# calculate global-level matching loss
loss_gm_infoNCE = self.criterion(sim_gm)
# calculate vector-based reasoning loss
loss_vr_infoNCE = self.criterion(sim_vr)
# sum infoNCE loss
loss_infoNCE = self.alpha * loss_lm_infoNCE + self.beta * loss_vr_infoNCE + (1 - self.alpha - self.beta) * loss_gm_infoNCE
# FINAL LOSS
loss_all = loss_infoNCE
return loss_all
class HMRN(object):
"""
Hierarchical Matching and Reasoning Network (HMRN)
"""
def __init__(self, opt):
# Build Models
self.opt = opt
self.grad_clip = opt.grad_clip
self.img_enc = EncoderImage(opt, opt.img_dim, opt.embed_size,
no_imgnorm=opt.no_imgnorm)
self.txt_enc = EncoderText(opt, opt.vocab_size, opt.word_dim,
opt.embed_size, opt.num_layers,
use_bi_gru=opt.bi_gru,
no_txtnorm=opt.no_txtnorm)
self.sim_enc = EncoderSimilarity(opt, opt.embed_size, opt.sim_dim,
opt.icr_step)
self.compute_loss = ComputeFinalLoss(opt, opt.alpha, opt.beta)
if torch.cuda.is_available():
self.img_enc.cuda()
self.txt_enc.cuda()
self.sim_enc.cuda()
cudnn.benchmark = True
# Loss and Optimizer
params = list(self.txt_enc.parameters())
params += list(self.img_enc.parameters())
params += list(self.sim_enc.parameters())
self.params = params
self.optimizer = torch.optim.Adam(params, lr=opt.learning_rate)
self.Eiters = 0
def state_dict(self):
state_dict = [self.img_enc.state_dict(), self.txt_enc.state_dict(), self.sim_enc.state_dict()]
return state_dict
def load_state_dict(self, state_dict):
self.img_enc.load_state_dict(state_dict[0])
self.txt_enc.load_state_dict(state_dict[1])
self.sim_enc.load_state_dict(state_dict[2])
def train_start(self):
"""switch to train mode"""
self.img_enc.train()
self.txt_enc.train()
self.sim_enc.train()
def val_start(self):
"""switch to evaluate mode"""
self.img_enc.eval()
self.txt_enc.eval()
self.sim_enc.eval()
def forward_emb(self, images, captions, captions_msks):
"""Compute the image and caption embeddings"""
if torch.cuda.is_available():
images = images.cuda()
captions = captions.cuda()
# Forward feature encoding
img_embs = self.img_enc(images)
cap_embs, lengths = self.txt_enc(captions, captions_msks)
return img_embs, cap_embs, lengths
def forward_sim(self, img_embs, cap_embs, cap_lens):
# Forward similarity encoding
sim_lm, sim_gm, sim_vr = self.sim_enc(img_embs, cap_embs, cap_lens)
return sim_lm, sim_gm, sim_vr
def forward_loss(self, sim_lm, sim_gm, sim_vr, **kwargs):
"""Compute the loss given pairs of image and caption embeddings
"""
bsize = sim_lm.size(0)
loss = self.compute_loss(sim_lm, sim_gm, sim_vr)
self.logger.update('infoNCE', loss.item(), bsize)
return loss
def train_emb(self, images, captions, captions_msks, lengths, ids=None, *args):
"""One training step given images and captions.
"""
self.Eiters += 1
self.logger.update('Eit', self.Eiters)
self.logger.update('lr', self.optimizer.param_groups[0]['lr'])
# compute the embeddings
img_embs, cap_embs, cap_lens = self.forward_emb(images, captions, captions_msks)
sim_lm, sim_gm, sim_vr = self.forward_sim(img_embs, cap_embs, cap_lens)
# measure accuracy and record loss
self.optimizer.zero_grad()
loss = self.forward_loss(sim_lm, sim_gm, sim_vr)
# compute gradient and do SGD step
loss.backward()
if self.grad_clip > 0:
clip_grad_norm_(self.params, self.grad_clip)
self.optimizer.step()