-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_loader.py
310 lines (247 loc) · 10.4 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import copy
import json
import numpy as np
from utils import BASEPATH, DATASET
from keras.preprocessing.sequence import pad_sequences
import matplotlib.pyplot as plt
from tqdm import trange
class DataLoader(object):
def __init__(self, dataset, mask_zero=True, split_mode={'label':1., 'unlabel':0.}):
self.mask_zero = mask_zero
self.split_mode = split_mode
assert DATASET.get(dataset), "Please check the dataset name!"
# handle the raw data files
self.__get_vocabs(f"{BASEPATH}{DATASET[dataset]['vocab']}")
train_cache = self.__get_sentences(f"{BASEPATH}{DATASET[dataset]['to']['train']}")
dev_cache = self.__get_sentences(f"{BASEPATH}{DATASET[dataset]['to']['dev']}")
test_cache = self.__get_sentences(f"{BASEPATH}{DATASET[dataset]['to']['test']}")
# calc the maximum length of the sentences
self.max_sent_len = max([cache['max_sent_len'] for cache in [train_cache, dev_cache, test_cache]])
self.max_char_len = max([cache['max_char_len'] for cache in [train_cache, dev_cache, test_cache]])
# padding the sentences
unlabel_cache = \
self.__padding(train_cache['chars']+dev_cache['chars'],
train_cache['sentences']+dev_cache['sentences'],
train_cache['ner']+dev_cache['ner'],
train_cache['nen']+dev_cache['nen'])
test_cache = \
self.__padding(test_cache['chars'], test_cache['sentences'],
test_cache['ner'], test_cache['nen'])
self.dataset = [
np.array(unlabel_cache['real_len'].tolist()+test_cache['real_len'].tolist()),
np.vstack((unlabel_cache['sentences'], test_cache['sentences'])),
np.vstack((unlabel_cache['ner'], test_cache['ner'])),
np.vstack((unlabel_cache['nen'], test_cache['nen'])),
np.vstack((unlabel_cache['chars'], test_cache['chars']))
]
# split the dataset
self.__split()
for k, v in self.split_idx.items():
print(f"{k} nums: {len(v)}")
@property
def CharLength(self):
return self.max_char_len
@property
def SentenceLength(self):
return self.max_sent_len
@property
def CharSize(self):
return max(self.chars.values()) + 1
@property
def VocabSize(self):
return max(self.vocabs.values()) + 1
@property
def EmbedSize(self):
return 200
@property
def NERTagSize(self):
return len(self.ner_tags)
@property
def NENTagSize(self):
return len(self.nen_tags)
def idx2sentence(self, idx):
sentences = []
for i in idx:
tmp = []
for w in i:
if w:
tmp.append(\
list(self.vocabs.keys())[\
list(self.vocabs.values()).index(int(w))])
sentences.append(tmp)
return sentences
def idx2char(self, idx):
sentences = []
for i in idx:
tmp = []
for c in i:
tmp.append(\
list(self.chars.keys())[\
list(self.chars.values()).index(int(c))])
sentences.append(tmp)
return sentences
def idx2tag(self, idx, dtype='ner'):
data = []
tags = self.ner_tags if dtype == 'ner' else self.nen_tags
for i in idx:
tmp = []
for w in i:
if w == -1:
tmp.append('O')
else:
tmp.append(tags[w])
data.append(tmp)
return np.array(data)
def changeData(self, filtered_idx, selected_idx):
unlabel_idx = self.split_idx['unlabel']
label_idx = self.split_idx['label']
self.split_idx["unlabel"] = filtered_idx
self.split_idx["label"] = np.array(label_idx.tolist()\
+selected_idx.tolist())
def __mask_data(self, data, mask_rate):
prob = np.random.uniform(size=data.shape)
mask = np.ones_like(data)
idx = np.where(prob <= mask_rate)
mask[idx] = 0.
data = data * mask + (1. - mask) * self.vocabs.get("unk")
return data
def getBatch(self, dtype, batch_size):
assert batch_size > 0, f"batch_size {batch_size} <= 0, error!"
idx = self.split_idx[dtype]
np.random.shuffle(idx)
sliced_idx = idx[:batch_size]
data = [x[sliced_idx] for x in self.dataset]
return (sliced_idx, data[0], data[1], data[2], data[3], data[4])
def parseId2RawData(self, idx):
data = [x[idx] for x in self.dataset]
real_len = data[0]
sent = self.idx2sentence(data[1])
tag = self.idx2tag(data[2])
raw_sent, raw_tag = [], []
for i in range(len(data[0])):
raw_sent.append(sent[i][-real_len[i]:])
raw_tag.append(tag[i][-real_len[i]:])
return (raw_sent, raw_tag)
def getData(self, dtype, batch_size=-1):
idx = self.split_idx[dtype]
np.random.shuffle(idx)
batch_size = len(idx) if batch_size < 0 else batch_size
for i in trange(len(idx) // batch_size, ascii=True):
start_idx = i * batch_size
end_idx = (i + 1) * batch_size
sliced_idx = idx[start_idx:end_idx]
data = [x[sliced_idx] for x in self.dataset]
yield (sliced_idx, data[0], data[1], data[2], data[3], data[4])
def nextBatch(self, batch_size, dtype, mask_rate=0.):
idx = self.split_idx[dtype]
np.random.shuffle(idx)
for i in trange(len(idx) // batch_size, ascii=True):
start_idx = i * batch_size
end_idx = (i + 1) * batch_size
data = [x[idx[start_idx:end_idx]] for x in self.dataset]
yield (data[0], self.__mask_data(data[1], mask_rate), data[2], data[3], data[4])
def __split(self):
idx = [i for i in range(len(self.dataset[0]))]
np.random.shuffle(idx)
start_idx = 0
split_idx = {}
for k, v in self.split_mode.items():
end_idx = int(start_idx + len(idx)*v)
split_idx[k] = np.array(idx[start_idx:end_idx])
start_idx = end_idx
self.split_idx = split_idx
def __padding(self, chars, sentences, ner_tags, nen_tags):
real_len = np.array([len(s) for s in sentences])
x = pad_sequences(sentences, self.max_sent_len, value=int(not self.mask_zero))
ner_y = pad_sequences(ner_tags, self.max_sent_len, value=-1)
nen_y = pad_sequences(nen_tags, self.max_sent_len, value=-1)
c = []
for char in chars:
tmp = []
for t in char:
pad_size = self.max_char_len - len(t)
t = [self.chars.get('pad')]*(pad_size//2) + t
pad_size = self.max_char_len - len(t)
if pad_size:
t = t + [self.chars.get('pad')]*pad_size
tmp.append(t)
for _ in range(self.max_sent_len - len(tmp)):
tmp.insert(0, [0]*self.max_char_len)
c.append(tmp)
return {
'real_len': real_len,
'sentences': x,
'chars': c,
'ner': ner_y,
'nen': nen_y
}
def __get_vocabs(self, path):
with open(path, 'r', encoding='utf-8') as fp:
data = json.load(fp)
self.chars = dict((c, i+1) for i, c in enumerate(data['chars']))
self.vocabs = dict((w.lower(), i+1 if self.mask_zero else i) for i, w in enumerate(data['vocabs']))
self.embeddings = np.array(data['w2v'])
self.embedding_size = data['embedding_size']
self.ner_tags = data['ner_tag']
# Remove 'O' Tag
self.nen_tags = data['nen_tag']
if '-1' in self.nen_tags:
del(self.nen_tags[self.nen_tags.index('-1')])
def __get_sentences(self, path):
max_sent_len = 0
max_char_len = 0
sentences = []
chars = []
ner_tags = []
nen_tags = []
with open(path, 'r', encoding='utf-8') as fp:
char = []
sentence = []
ner_tag = []
nen_tag = []
for line in fp.readlines():
line = line.strip()
if line:
word, r_tag, n_tag = line.split('\t')
char.append([self.chars.get(i, self.chars.get('unk')) for i in word.lower()])
max_char_len = max(max_char_len, len(char[-1]))
sentence.append(self.vocabs.get(word.lower(), self.vocabs.get("unk")))
ner_tag.append(self.ner_tags.index(r_tag))
if n_tag == '-1':
nen_tag.append(self.nen_tags.index('O'))
else:
if '|' in n_tag:
n_tag = n_tag.split('|')[0]
nen_tag.append(self.nen_tags.index(n_tag))
else:
if len(sentence) > 5 and len(sentence) < 60:
flag = False
# select the sentence sample without all "O" tags
for n, r in zip(nen_tag, ner_tag):
if n != 'O' and r != 'O':
flag = True
# flag = True
if flag:
chars.append(copy.deepcopy(char))
max_sent_len = max(max_sent_len, len(sentence))
sentences.append(copy.deepcopy(sentence))
ner_tags.append(copy.deepcopy(ner_tag))
nen_tags.append(copy.deepcopy(nen_tag))
char.clear()
sentence.clear()
ner_tag.clear()
nen_tag.clear()
return {
'max_sent_len': max_sent_len,
'max_char_len': max_char_len,
'sentences': sentences,
'chars': chars,
'ner': ner_tags,
'nen': nen_tags
}
if __name__ == '__main__':
dataloader = DataLoader('cdr')
# print(dataloader.vocabs)
# for real_len, x, ner, nen, c in dataloader.nextBatch(64, 'label'):
# print(dataloader.idx2sentence(x))