-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.py
211 lines (192 loc) · 8.81 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
Copyright 2017 Neural Networks and Deep Learning lab, MIPT
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from collections import OrderedDict
def chunk_finder(current_token, previous_token, tag):
current_tag = current_token.split('-', 1)[-1]
previous_tag = previous_token.split('-', 1)[-1]
if previous_tag != tag:
previous_tag = 'O'
if current_tag != tag:
current_tag = 'O'
if (previous_tag == 'O' and current_token == 'B-' + tag) or \
(previous_token == 'I-' + tag and current_token == 'B-' + tag) or \
(previous_token == 'B-' + tag and current_token == 'B-' + tag) or \
(previous_tag == 'O' and current_token == 'I-' + tag):
create_chunk = True
else:
create_chunk = False
if (previous_token == 'I-' + tag and current_token == 'B-' + tag) or \
(previous_token == 'B-' + tag and current_token == 'B-' + tag) or \
(current_tag == 'O' and previous_token == 'I-' + tag) or \
(current_tag == 'O' and previous_token == 'B-' + tag):
pop_out = True
else:
pop_out = False
return create_chunk, pop_out
def precision_recall_f1(y_true, y_pred, print_results=True, short_report=False, entity_of_interest=None):
# Find all tags
tags = set()
for tag in y_true + y_pred:
if tag != 'O':
current_tag = tag[2:]
tags.add(current_tag)
tags = sorted(list(tags))
results = OrderedDict()
for tag in tags:
results[tag] = OrderedDict()
results['__total__'] = OrderedDict()
n_tokens = len(y_true)
total_correct = 0
# Firstly we find all chunks in the ground truth and prediction
# For each chunk we write starting and ending indices
for tag in tags:
count = 0
true_chunk = list()
pred_chunk = list()
y_true = [str(y) for y in y_true]
y_pred = [str(y) for y in y_pred]
prev_tag_true = 'O'
prev_tag_pred = 'O'
while count < n_tokens:
yt = y_true[count]
yp = y_pred[count]
create_chunk_true, pop_out_true = chunk_finder(yt, prev_tag_true, tag)
if pop_out_true:
true_chunk[-1].append(count - 1)
if create_chunk_true:
true_chunk.append([count])
create_chunk_pred, pop_out_pred = chunk_finder(yp, prev_tag_pred, tag)
if pop_out_pred:
pred_chunk[-1].append(count - 1)
if create_chunk_pred:
pred_chunk.append([count])
prev_tag_true = yt
prev_tag_pred = yp
count += 1
if len(true_chunk) > 0 and len(true_chunk[-1]) == 1:
true_chunk[-1].append(count - 1)
if len(pred_chunk) > 0 and len(pred_chunk[-1]) == 1:
pred_chunk[-1].append(count - 1)
# Then we find all correctly classified intervals
# True positive results
tp = 0
for start, stop in true_chunk:
for start_p, stop_p in pred_chunk:
if start == start_p and stop == stop_p:
tp += 1
if start_p > stop:
break
total_correct += tp
# And then just calculate errors of the first and second kind
# False negative
fn = len(true_chunk) - tp
# False positive
fp = len(pred_chunk) - tp
if tp + fp > 0:
precision = tp / (tp + fp) * 100
else:
precision = 0
if tp + fn > 0:
recall = tp / (tp + fn) * 100
else:
recall = 0
if precision + recall > 0:
f1 = 2 * precision * recall / (precision + recall)
else:
f1 = 0
results[tag]['precision'] = precision
results[tag]['recall'] = recall
results[tag]['f1'] = f1
results[tag]['n_predicted_entities'] = len(pred_chunk)
results[tag]['n_true_entities'] = len(true_chunk)
total_true_entities = 0
total_predicted_entities = 0
total_precision = 0
total_recall = 0
total_f1 = 0
for tag in results:
if tag == '__total__':
continue
n_pred = results[tag]['n_predicted_entities']
n_true = results[tag]['n_true_entities']
total_true_entities += n_true
total_predicted_entities += n_pred
total_precision += results[tag]['precision'] * n_pred
total_recall += results[tag]['recall'] * n_true
total_f1 += results[tag]['f1'] * n_true
if total_true_entities > 0:
accuracy = total_correct / total_true_entities * 100
total_recall = total_recall / total_true_entities
else:
accuracy = 0
total_recall = 0
if total_predicted_entities > 0:
total_precision = total_precision / total_predicted_entities
else:
total_precision = 0
if total_precision + total_recall > 0:
total_f1 = 2 * total_precision * total_recall / (total_precision + total_recall)
else:
total_f1 = 0
results['__total__']['n_predicted_entities'] = total_predicted_entities
results['__total__']['n_true_entities'] = total_true_entities
results['__total__']['precision'] = total_precision
results['__total__']['recall'] = total_recall
results['__total__']['f1'] = total_f1
if print_results:
s = 'processed {len} tokens ' \
'with {tot_true} phrases; ' \
'found: {tot_pred} phrases;' \
' correct: {tot_cor}.\n\n'.format(len=n_tokens,
tot_true=total_true_entities,
tot_pred=total_predicted_entities,
tot_cor=total_correct)
s += 'precision: {tot_prec:.2f}%; ' \
'recall: {tot_recall:.2f}%; ' \
'FB1: {tot_f1:.2f}\n\n'.format(acc=accuracy,
tot_prec=total_precision,
tot_recall=total_recall,
tot_f1=total_f1)
if not short_report:
for tag in tags:
if entity_of_interest is not None:
if entity_of_interest in tag:
s += '\t' + tag + ': precision: {tot_prec:.2f}%; ' \
'recall: {tot_recall:.2f}%; ' \
'F1: {tot_f1:.2f} ' \
'{tot_predicted}\n\n'.format(tot_prec=results[tag]['precision'],
tot_recall=results[tag]['recall'],
tot_f1=results[tag]['f1'],
tot_predicted=results[tag]['n_predicted_entities'])
elif tag != '__total__':
s += '\t' + tag + ': precision: {tot_prec:.2f}%; ' \
'recall: {tot_recall:.2f}%; ' \
'F1: {tot_f1:.2f} ' \
'{tot_predicted}\n\n'.format(tot_prec=results[tag]['precision'],
tot_recall=results[tag]['recall'],
tot_f1=results[tag]['f1'],
tot_predicted=results[tag]['n_predicted_entities'])
elif entity_of_interest is not None:
s += '\t' + entity_of_interest + ': precision: {tot_prec:.2f}%; ' \
'recall: {tot_recall:.2f}%; ' \
'F1: {tot_f1:.2f} ' \
'{tot_predicted}\n\n'.format(tot_prec=results[entity_of_interest]['precision'],
tot_recall=results[entity_of_interest]['recall'],
tot_f1=results[entity_of_interest]['f1'],
tot_predicted=results[entity_of_interest]['n_predicted_entities'])
print(s)
return results
if __name__ == "__main__":
pred = ['B-Disease', 'I-Disease', 'O', 'O']
real = ['B-Disease', 'I-Disease', 'O', 'O']
print(precision_recall_f1(real, pred, print_results=False)['__total__'])