-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
63 lines (46 loc) · 1.66 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import transformers
from torch.utils.data import Dataset
import json
import logging
PROMPT_DICT = {
"prompt_input": ("{instruction}\n\n {input}\n\n"),
"prompt_no_input": ("{instruction}\n\n"),
}
class Seq2SeqDataset(Dataset):
def __init__(self, data_path):
super(Seq2SeqDataset, self).__init__()
logging.warning("Loading data...")
with open(data_path, "r") as f:
list_data_dict = json.load(f)
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT[
"prompt_no_input"]
logging.warning("Formatting data...")
sources = [
prompt_input.format_map(example) if example.get("input", "") != "" else
prompt_no_input.format_map(example) for example in list_data_dict
]
targets = [f"{example['output']}" for example in list_data_dict]
self.sources = sources
self.targets = targets
def __len__(self):
return len(self.sources)
def __getitem__(self, item):
return self.sources[item], self.targets[item]
class Seq2SeqCollator(object):
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def __call__(self, batch):
sources = [ex[0] for ex in batch]
targets = [ex[1] for ex in batch]
inputs = self.tokenizer(sources,
max_length=40,
return_tensors='pt',
padding=True,
truncation=True)
labels = self.tokenizer(targets,
max_length=160,
return_tensors='pt',
padding=True,
truncation=True).input_ids
inputs['labels'] = labels
return inputs