-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtrain_Semi_Mamba_UNet.py
executable file
·396 lines (332 loc) · 16.9 KB
/
train_Semi_Mamba_UNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import argparse
import logging
import os
import random
import shutil
import sys
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tensorboardX import SummaryWriter
from torch.nn.modules.loss import CrossEntropyLoss
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm
from networks.vision_mamba import MambaUnet as ViM_seg
from config import get_config
from dataloaders import utils
from dataloaders.dataset import (BaseDataSets, RandomGenerator, BaseDataSets_Synapse,
TwoStreamBatchSampler)
from networks.net_factory import net_factory
from networks.vision_transformer import SwinUnet as ViT_seg
from utils import losses, metrics, ramps
from val_2D import test_single_volume
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str,
default='../data/ACDC', help='Name of Experiment')
parser.add_argument('--exp', type=str,
default='ACDC/Semi_Mamba_UNet', help='experiment_name')
parser.add_argument('--model', type=str,
default='mambaunet', help='model_name')
parser.add_argument('--max_iterations', type=int,
default=30000, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int, default=16,
help='batch_size per gpu')
parser.add_argument('--deterministic', type=int, default=1,
help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.01,
help='segmentation network learning rate')
parser.add_argument('--patch_size', type=list, default=[224, 224],
help='patch size of network input')
parser.add_argument('--seed', type=int, default=1337, help='random seed')
parser.add_argument('--num_classes', type=int, default=4,
help='output channel of network')
parser.add_argument(
'--cfg', type=str, default="../code/configs/vmamba_tiny.yaml", help='path to config file', )
# '--cfg', type=str, default="../code/configs/swin_tiny_patch4_window7_224_lite.yaml", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
parser.add_argument('--zip', action='store_true',
help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps', type=int,
help="gradient accumulation steps")
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true',
help='Test throughput only')
# label and unlabel
parser.add_argument('--labeled_bs', type=int, default=8,
help='labeled_batch_size per gpu')
parser.add_argument('--labeled_num', type=int, default=3,
help='labeled data')
# costs
parser.add_argument('--ema_decay', type=float, default=0.99, help='ema_decay')
parser.add_argument('--consistency_type', type=str,
default="mse", help='consistency_type')
parser.add_argument('--consistency', type=float,
default=0.1, help='consistency')
parser.add_argument('--consistency_rampup', type=float,
default=200.0, help='consistency_rampup')
args = parser.parse_args()
config = get_config(args)
def kaiming_normal_init_weight(model):
for m in model.modules():
if isinstance(m, nn.Conv2d):
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
return model
def xavier_normal_init_weight(model):
for m in model.modules():
if isinstance(m, nn.Conv2d):
torch.nn.init.xavier_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
return model
def patients_to_slices(dataset, patiens_num):
ref_dict = None
if "ACDC" in dataset:
ref_dict = {'1':14,'2':28, "3": 68, "7": 136,
"14": 256, "21": 396, "28": 512, "35": 664, "140": 1311}
else:
print("Error")
return ref_dict[str(patiens_num)]
def get_current_consistency_weight(epoch):
# Consistency ramp-up from https://arxiv.org/abs/1610.02242
return args.consistency * ramps.sigmoid_rampup(epoch, args.consistency_rampup)
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
def train(args, snapshot_path):
base_lr = args.base_lr
num_classes = args.num_classes
batch_size = args.batch_size
max_iterations = args.max_iterations
# def create_model(ema=False):
# # Network definition
# model = net_factory(net_type='unet', in_chns=1,
# class_num=num_classes)
# if ema:
# for param in model.parameters():
# param.detach_()
# return model
model2 = ViM_seg(config, img_size=args.patch_size,
num_classes=args.num_classes).cuda()
model2.load_from(config)
model2 = ViM_seg(config, img_size=args.patch_size,
num_classes=args.num_classes).cuda()
model2.load_from(config)
def worker_init_fn(worker_id):
random.seed(args.seed + worker_id)
db_train = BaseDataSets(base_dir=args.root_path, split="train", num=None, transform=transforms.Compose([
RandomGenerator(args.patch_size)
]))
db_val = BaseDataSets(base_dir=args.root_path, split="val")
total_slices = len(db_train)
labeled_slice = patients_to_slices(args.root_path, args.labeled_num)
print("Total silices is: {}, labeled slices is: {}".format(
total_slices, labeled_slice))
labeled_idxs = list(range(0, labeled_slice))
unlabeled_idxs = list(range(labeled_slice, total_slices))
batch_sampler = TwoStreamBatchSampler(
labeled_idxs, unlabeled_idxs, batch_size, batch_size-args.labeled_bs)
trainloader = DataLoader(db_train, batch_sampler=batch_sampler,
num_workers=4, pin_memory=True, worker_init_fn=worker_init_fn)
model1.train()
model2.train()
valloader = DataLoader(db_val, batch_size=1, shuffle=False,
num_workers=1)
optimizer1 = optim.SGD(model1.parameters(), lr=base_lr,
momentum=0.9, weight_decay=0.0001)
optimizer2 = optim.SGD(model2.parameters(), lr=base_lr,
momentum=0.9, weight_decay=0.0001)
ce_loss = CrossEntropyLoss()
dice_loss = losses.DiceLoss(num_classes)
writer = SummaryWriter(snapshot_path + '/log')
logging.info("{} iterations per epoch".format(len(trainloader)))
iter_num = 0
max_epoch = max_iterations // len(trainloader) + 1
best_performance1 = 0.0
best_performance2 = 0.0
iterator = tqdm(range(max_epoch), ncols=70)
for epoch_num in iterator:
for i_batch, sampled_batch in enumerate(trainloader):
volume_batch, label_batch = sampled_batch['image'], sampled_batch['label']
volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()
outputs1 = model1(volume_batch)
outputs_soft1 = torch.softmax(outputs1, dim=1)
outputs2 = model2(volume_batch)
outputs_soft2 = torch.softmax(outputs2, dim=1)
consistency_weight = get_current_consistency_weight(
iter_num // 150)
loss1 = 0.5 * (ce_loss(outputs1[:args.labeled_bs], label_batch[:args.labeled_bs].long()) + dice_loss(
outputs_soft1[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1)))
loss2 = 0.5 * (ce_loss(outputs2[:args.labeled_bs], label_batch[:args.labeled_bs].long()) + dice_loss(
outputs_soft2[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1)))
pseudo_outputs1 = torch.argmax(
outputs_soft1[args.labeled_bs:].detach(), dim=1, keepdim=False)
pseudo_outputs2 = torch.argmax(
outputs_soft2[args.labeled_bs:].detach(), dim=1, keepdim=False)
pseudo_supervision1 = dice_loss(
outputs_soft1[args.labeled_bs:], pseudo_outputs2.unsqueeze(1))
pseudo_supervision2 = dice_loss(
outputs_soft2[args.labeled_bs:], pseudo_outputs1.unsqueeze(1))
from utils.losses import ConstraLoss
con1 = ConstraLoss(outputs1,outputs2)
# model1_loss = loss1 + consistency_weight * pseudo_supervision1
# model2_loss = loss2 + consistency_weight * pseudo_supervision2
model1_loss = loss1 + consistency_weight * pseudo_supervision1 +0.5*con1
model2_loss = loss2 + consistency_weight * pseudo_supervision2 +0.5*con1
loss = model1_loss + model2_loss
optimizer1.zero_grad()
optimizer2.zero_grad()
loss.backward()
optimizer1.step()
optimizer2.step()
iter_num = iter_num + 1
lr_ = base_lr * (1.0 - iter_num / max_iterations) ** 0.9
for param_group in optimizer1.param_groups:
param_group['lr'] = lr_
for param_group in optimizer2.param_groups:
param_group['lr'] = lr_
writer.add_scalar('lr', lr_, iter_num)
writer.add_scalar(
'consistency_weight/consistency_weight', consistency_weight, iter_num)
writer.add_scalar('loss/model1_loss',
model1_loss, iter_num)
writer.add_scalar('loss/model2_loss',
model2_loss, iter_num)
logging.info('iteration %d : model1 loss : %f model2 loss : %f' % (
iter_num, model1_loss.item(), model2_loss.item()))
if iter_num % 50 == 0:
image = volume_batch[1, 0:1, :, :]
writer.add_image('train/Image', image, iter_num)
outputs = torch.argmax(torch.softmax(
outputs1, dim=1), dim=1, keepdim=True)
writer.add_image('train/model1_Prediction',
outputs[1, ...] * 50, iter_num)
outputs = torch.argmax(torch.softmax(
outputs2, dim=1), dim=1, keepdim=True)
writer.add_image('train/model2_Prediction',
outputs[1, ...] * 50, iter_num)
labs = label_batch[1, ...].unsqueeze(0) * 50
writer.add_image('train/GroundTruth', labs, iter_num)
if iter_num > 0 and iter_num % 200 == 0:
model1.eval()
metric_list = 0.0
for i_batch, sampled_batch in enumerate(valloader):
metric_i = test_single_volume(
sampled_batch["image"], sampled_batch["label"], model1, classes=num_classes, patch_size=args.patch_size)
metric_list += np.array(metric_i)
metric_list = metric_list / len(db_val)
for class_i in range(num_classes-1):
writer.add_scalar('info/model1_val_{}_dice'.format(class_i+1),
metric_list[class_i, 0], iter_num)
writer.add_scalar('info/model1_val_{}_hd95'.format(class_i+1),
metric_list[class_i, 1], iter_num)
performance1 = np.mean(metric_list, axis=0)[0]
mean_hd951 = np.mean(metric_list, axis=0)[1]
writer.add_scalar('info/model1_val_mean_dice',
performance1, iter_num)
writer.add_scalar('info/model1_val_mean_hd95',
mean_hd951, iter_num)
if performance1 > best_performance1:
best_performance1 = performance1
save_mode_path = os.path.join(snapshot_path,
'model1_iter_{}_dice_{}.pth'.format(
iter_num, round(best_performance1, 4)))
save_best = os.path.join(snapshot_path,
'{}_best_model1.pth'.format(args.model))
torch.save(model1.state_dict(), save_mode_path)
torch.save(model1.state_dict(), save_best)
logging.info(
'iteration %d : model1_mean_dice : %f model1_mean_hd95 : %f' % (iter_num, performance1, mean_hd951))
model1.train()
model2.eval()
metric_list = 0.0
for i_batch, sampled_batch in enumerate(valloader):
metric_i = test_single_volume(
sampled_batch["image"], sampled_batch["label"], model2, classes=num_classes, patch_size=args.patch_size)
metric_list += np.array(metric_i)
metric_list = metric_list / len(db_val)
for class_i in range(num_classes-1):
writer.add_scalar('info/model2_val_{}_dice'.format(class_i+1),
metric_list[class_i, 0], iter_num)
writer.add_scalar('info/model2_val_{}_hd95'.format(class_i+1),
metric_list[class_i, 1], iter_num)
performance2 = np.mean(metric_list, axis=0)[0]
mean_hd952 = np.mean(metric_list, axis=0)[1]
writer.add_scalar('info/model2_val_mean_dice',
performance2, iter_num)
writer.add_scalar('info/model2_val_mean_hd95',
mean_hd952, iter_num)
if performance2 > best_performance2:
best_performance2 = performance2
save_mode_path = os.path.join(snapshot_path,
'model2_iter_{}_dice_{}.pth'.format(
iter_num, round(best_performance2, 4)))
save_best = os.path.join(snapshot_path,
'{}_best_model2.pth'.format(args.model))
torch.save(model2.state_dict(), save_mode_path)
torch.save(model2.state_dict(), save_best)
logging.info(
'iteration %d : model2_mean_dice : %f model2_mean_hd95 : %f' % (iter_num, performance2, mean_hd952))
model2.train()
if iter_num % 3000 == 0:
save_mode_path = os.path.join(
snapshot_path, 'model1_iter_' + str(iter_num) + '.pth')
torch.save(model1.state_dict(), save_mode_path)
logging.info("save model1 to {}".format(save_mode_path))
save_mode_path = os.path.join(
snapshot_path, 'model2_iter_' + str(iter_num) + '.pth')
torch.save(model2.state_dict(), save_mode_path)
logging.info("save model2 to {}".format(save_mode_path))
if iter_num >= max_iterations:
break
time1 = time.time()
if iter_num >= max_iterations:
iterator.close()
break
writer.close()
if __name__ == "__main__":
if not args.deterministic:
cudnn.benchmark = True
cudnn.deterministic = False
else:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
snapshot_path = "../model/{}_{}/{}".format(
args.exp, args.labeled_num, args.model)
if not os.path.exists(snapshot_path):
os.makedirs(snapshot_path)
logging.basicConfig(filename=snapshot_path+"/log.txt", level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
train(args, snapshot_path)