-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy patheval.py
executable file
·76 lines (66 loc) · 2.46 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
'''
* @author [Zizhao Zhang]
* @email [[email protected]]
* @create date 2017-05-25 02:20:32
* @modify date 2017-05-25 02:20:32
* @desc [description]
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import os, sys
import numpy as np
import scipy.misc as misc
from model import UNet
from utils import dice_coef, dice_coef_loss
from loader import dataLoader, deprocess
from PIL import Image
from utils import VIS, mean_IU
# configure args
from opts import *
from opts import dataset_mean, dataset_std # set them in opts
vis = VIS(save_path=opt.load_from_checkpoint)
# configuration session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
# define data loader
img_shape = [opt.imSize, opt.imSize]
test_generator, test_samples = dataLoader(opt.data_path+'/val/', 1, img_shape, train_mode=False)
# define model, the last dimension is the channel
label = tf.placeholder(tf.int32, shape=[None]+img_shape)
with tf.name_scope('unet'):
model = UNet().create_model(img_shape=img_shape+[3], num_class=opt.num_class)
img = model.input
pred = model.output
# define loss
with tf.name_scope('cross_entropy'):
cross_entropy_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label, logits=pred))
saver = tf.train.Saver() # must be added in the end
''' Main '''
init_op = tf.global_variables_initializer()
sess.run(init_op)
with sess.as_default():
# restore from a checkpoint if exists
try:
saver.restore(sess, opt.load_from_checkpoint)
print ('--> load from checkpoint '+opt.load_from_checkpoint)
except:
print ('unable to load checkpoint ...')
sys.exit(0)
dice_score = 0
for it in range(0, test_samples):
x_batch, y_batch = next(test_generator)
# tensorflow wants a different tensor order
feed_dict = {
img: x_batch,
label: y_batch
}
loss, pred_logits = sess.run([cross_entropy_loss, pred], feed_dict=feed_dict)
pred_map = np.argmax(pred_logits[0], axis=2)
score = vis.add_sample(pred_map, y_batch[0])
im, gt = deprocess(x_batch[0], dataset_mean, dataset_std, y_batch[0])
vis.save_seg(pred_map, name='{0:}_{1:.3f}.png'.format(it, score), im=im, gt=gt)
print ('[iter %f]: loss=%f, meanIU=%f' % (it, loss, score))
vis.compute_scores()