-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathloader.py
executable file
·95 lines (79 loc) · 3.26 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
'''
* @author [Zizhao Zhang]
* @email [[email protected]]
* @create date 2017-05-19 03:06:43
* @modify date 2017-05-19 03:06:43
* @desc [description]
'''
from data_generator.image import ImageDataGenerator
import scipy.misc as misc
import numpy as np
import os, glob, itertools
from PIL import ImageFile
from PIL import Image as pil_image
ImageFile.LOAD_TRUNCATED_IMAGES = True
# Modify this for data normalization
def preprocess(img, mean, std, label, normalize_label=True):
out_img = img / img.max() # scale to [0,1]
out_img = (out_img - np.array(mean).reshape(1,1,3)) / np.array(std).reshape(1,1,3)
if len(label.shape) == 4:
label = label[:,:,:,0]
if normalize_label:
if np.unique(label).size > 2:
print ('WRANING: the label has more than 2 classes. Set normalize_label to False')
label = label / label.max() # if the loaded label is binary has only [0,255], then we normalize it
return out_img, label.astype(np.int32)
def deprocess(img, mean, std, label):
out_img = img / img.max() # scale to [0,1]
out_img = (out_img * np.array(std).reshape(1,1,3)) + np.array(std).reshape(1,1,3)
out_img = out_img * 255.0
return out_img.astype(np.uint8), label.astype(np.uint8)
'''
Use the Keras data generators to load train and test
Image and label are in structure:
train/
img/
0/
gt/
0/
test/
img/
0/
gt/
0/
'''
def dataLoader(path, batch_size, imSize, train_mode=True, mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5]):
# image normalization default: scale to [-1,1]
def imerge(a, b):
for img, label in itertools.zip_longest(a,b):
# j is the mask: 1) gray-scale and int8
img, label = preprocess(img, mean, std, label)
yield img, label
# augmentation parms for the train generator
if train_mode:
train_data_gen_args = dict(
horizontal_flip=True,
vertical_flip=True,
)
else:
train_data_gen_args = dict()
# seed has to been set to synchronize img and mask generators
seed = 1
train_image_datagen = ImageDataGenerator(**train_data_gen_args).flow_from_directory(
path+'img',
class_mode=None,
target_size=imSize,
batch_size=batch_size,
seed=seed,
shuffle=train_mode)
train_mask_datagen = ImageDataGenerator(**train_data_gen_args).flow_from_directory(
path+'gt',
class_mode=None,
target_size=imSize,
batch_size=batch_size,
color_mode='grayscale',
seed=seed,
shuffle=train_mode)
samples = train_image_datagen.samples
generator = imerge(train_image_datagen, train_mask_datagen)
return generator, samples