-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathand.py
45 lines (43 loc) · 1.37 KB
/
and.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# -*- coding: utf-8 -*-#
"""
File : and.py
Description : 神经网络与深度学习
Author : 赵金朋
Modify Time : 2019/5/22 11:25
"""
import perceptron
def f(x):
#定义激活函数f
return 1 if x > 0 else 0
def get_training_dataset():
"""
基于and真值表构建训练数据
"""
# 构建训练数据
# 输入向量列表
input_vecs = [[1,1], [0,0], [1,0], [0,1]]
# 期望的输出列表,注意要与输入一一对应
# [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0
labels = [1, 0, 0, 0]
return input_vecs, labels
def train_and_perceptron():
"""
使用and真值表训练感知器
"""
# 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f
p = perceptron.Perceptron(2, f)
# 训练,迭代10轮, 学习速率为0.1
input_vecs, labels = get_training_dataset()
p.train(input_vecs, labels, 10, 0.1)
#返回训练好的感知器
return p
if __name__ == '__main__':
# 训练and感知器
and_perception = train_and_perceptron()
# 打印训练获得的权重
print(and_perception)
# 测试
print('1 and 1 = %d' % and_perception.predict([1, 1]))
print('0 and 0 = %d' % and_perception.predict([0, 0]))
print('1 and 0 = %d' % and_perception.predict([1, 0]))
print('0 and 1 = %d' % and_perception.predict([0, 1]))