-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate.py
92 lines (88 loc) · 4.79 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import argparse
import tools.find_mxnet
import mxnet as mx
import os
import sys
from evaluate.evaluate_net import evaluate_net
def parse_args():
parser = argparse.ArgumentParser(description='Evaluate a network')
parser.add_argument('--rec-path', dest='rec_path', help='which record file to use',
default=os.path.join(os.getcwd(), 'data', 'val.rec'), type=str)
parser.add_argument('--list-path', dest='list_path', help='which list file to use',
default="", type=str)
parser.add_argument('--network', dest='network', type=str, default='vgg16_reduced',
help='which network to use')
parser.add_argument('--batch-size', dest='batch_size', type=int, default=32,
help='evaluation batch size')
parser.add_argument('--num-class', dest='num_class', type=int, default=20,
help='number of classes')
parser.add_argument('--class-names', dest='class_names', type=str,
default='aeroplane, bicycle, bird, boat, bottle, bus, \
car, cat, chair, cow, diningtable, dog, horse, motorbike, \
person, pottedplant, sheep, sofa, train, tvmonitor',
help='string of comma separated names, or text filename')
parser.add_argument('--epoch', dest='epoch', help='epoch of pretrained model',
default=0, type=int)
parser.add_argument('--prefix', dest='prefix', help='load model prefix',
default=os.path.join(os.getcwd(), 'model', 'ssd_'), type=str)
parser.add_argument('--gpus', dest='gpu_id', help='GPU devices to evaluate with',
default='0', type=str)
parser.add_argument('--cpu', dest='cpu', help='use cpu to evaluate, this can be slow',
action='store_true')
parser.add_argument('--data-shape', dest='data_shape', type=int, default=300,
help='set image shape')
parser.add_argument('--mean-r', dest='mean_r', type=float, default=123,
help='red mean value')
parser.add_argument('--mean-g', dest='mean_g', type=float, default=117,
help='green mean value')
parser.add_argument('--mean-b', dest='mean_b', type=float, default=104,
help='blue mean value')
parser.add_argument('--nms', dest='nms_thresh', type=float, default=0.45,
help='non-maximum suppression threshold')
parser.add_argument('--overlap', dest='overlap_thresh', type=float, default=0.5,
help='evaluation overlap threshold')
parser.add_argument('--force', dest='force_nms', type=bool, default=False,
help='force non-maximum suppression on different class')
parser.add_argument('--use-difficult', dest='use_difficult', type=bool, default=False,
help='use difficult ground-truths in evaluation')
parser.add_argument('--voc07', dest='use_voc07_metric', type=bool, default=True,
help='use PASCAL VOC 07 metric')
parser.add_argument('--deploy', dest='deploy_net', help='Load network from model',
action='store_true', default=False)
parser.add_argument('--frequent', dest='frequent', help='frequency of logging',
default=20, type=int)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
# choose ctx
if args.cpu:
ctx = mx.cpu()
else:
ctx = [mx.gpu(int(i)) for i in args.gpu_id.split(',')]
# parse # classes and class_names if applicable
num_class = args.num_class
if len(args.class_names) > 0:
if os.path.isfile(args.class_names):
# try to open it to read class names
with open(args.class_names, 'r') as f:
class_names = [l.strip() for l in f.readlines()]
else:
class_names = [c.strip() for c in args.class_names.split(',')]
assert len(class_names) == num_class
for name in class_names:
assert len(name) > 0
else:
class_names = None
network = None if args.deploy_net else args.network
if args.prefix.endswith('_'):
prefix = args.prefix + args.network
else:
prefix = args.prefix
evaluate_net(network, args.rec_path, num_class,
(args.mean_r, args.mean_g, args.mean_b), args.data_shape,
prefix, args.epoch, ctx, batch_size=args.batch_size,
path_imglist=args.list_path, nms_thresh=args.nms_thresh,
force_nms=args.force_nms, ovp_thresh=args.overlap_thresh,
use_difficult=args.use_difficult, class_names=class_names,
voc07_metric=args.use_voc07_metric, frequent=args.frequent)