-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
325 lines (290 loc) · 15.1 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import logging
import os
import torchvision
from PIL import Image
from torch.utils.data import SubsetRandomSampler, Sampler
from torch.utils.data.dataset import ConcatDataset
from torchvision.transforms import transforms
from sklearn.model_selection import StratifiedShuffleSplit
from theconf import Config as C
import random
from augmentations import *
from common import get_logger
from imagenet import ImageNet
#from CIFAR10_cut import CIFAR10_PC
from augmentations import Lighting, RandAugment, RWAug_Search,RWAug_Train,RandAugment_th
logger = get_logger('DDAS')
logger.setLevel(logging.INFO)
_IMAGENET_PCA = {
'eigval': [0.2175, 0.0188, 0.0045],
'eigvec': [
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
]
}
_CIFAR_MEAN, _CIFAR_STD = (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
def get_dataloaders(dataset, batch, dataroot, split=0.15, split_idx=0):
if 'cifar' in dataset or 'svhn' in dataset:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(_CIFAR_MEAN, _CIFAR_STD),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(_CIFAR_MEAN, _CIFAR_STD),
])
elif 'imagenet' in dataset:
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224, scale=(0.08, 1.0), interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.4,
),
transforms.ToTensor(),
Lighting(0.1, _IMAGENET_PCA['eigval'], _IMAGENET_PCA['eigvec']),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.Resize(256, interpolation=Image.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
else:
raise ValueError('dataset=%s' % dataset)
logger.debug('augmentation: %s' % C.get()['aug'])
if C.get()['aug'] == 'randaugment':
transform_train.transforms.insert(0, RandAugment(C.get()['randaug']['N'], C.get()['randaug']['M']))
elif C.get()['aug'] == 'randaugment_th':
transform_train.transforms.insert(0, RandAugment_th(C.get()['randaug']['N'], C.get()['randaug']['M']))
elif C.get()['aug'] == 'randaugment_ohl':
# May 6th add for baseline "Total Random!"
transform_train.transforms.insert(0, RandAugment_ohl(C.get()['randaug']['N']))
elif C.get()['aug'] == 'curriculum_aug':
# May 13th add for baseline circul aug
transform_train.transforms.insert(0, Curriculum_Aug(C.get()['curriculum_aug']['N'], C.get()['curriculum_aug']['T']))
elif C.get()['aug'] == 'randaugment_G':
transform_train.transforms.insert(0, RandAugment_G(C.get()['randaug']['N'], C.get()['randaug']['M']))
elif C.get()['aug'] == 'randaugment_C':
transform_train.transforms.insert(0, RandAugment_C(C.get()['randaug']['N'], C.get()['randaug']['M']))
elif C.get()['aug'] == 'rwaug_t':
transform_train.transforms.insert(0, RWAug_Train(C.get()['rwaug']['n']))
elif C.get()['aug'] in ['default', 'inception', 'inception320','mix']:
pass
else:
raise ValueError('not found augmentations. %s' % C.get()['aug'])
if C.get()['cutout'] > 0:
transform_train.transforms.append(CutoutDefault(C.get()['cutout']))
if dataset == 'cifar10':
total_trainset = torchvision.datasets.CIFAR10(root=dataroot, train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root=dataroot, train=False, download=True, transform=transform_test)
elif dataset == 'cifar100':
total_trainset = torchvision.datasets.CIFAR100(root=dataroot, train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR100(root=dataroot, train=False, download=True, transform=transform_test)
elif dataset == 'svhn':
trainset = torchvision.datasets.SVHN(root=dataroot, split='train', download=True, transform=transform_train)
extraset = torchvision.datasets.SVHN(root=dataroot, split='extra', download=True, transform=transform_train)
total_trainset = ConcatDataset([trainset, extraset])
testset = torchvision.datasets.SVHN(root=dataroot, split='test', download=True, transform=transform_test)
elif dataset == 'imagenet':
total_trainset = torchvision.datasets.ImageFolder(root=os.path.join(dataroot, 'train'), transform=transform_train)
testset = torchvision.datasets.ImageFolder(root=os.path.join(dataroot, 'val'), transform=transform_test)
# total_trainset = ImageNet(root=os.path.join(dataroot, 'imagenet'), transform=transform_train)
# testset = ImageNet(root=os.path.join(dataroot, 'imagenet'), split='val', transform=transform_test)
# compatibility
total_trainset.targets = [lb for _, lb in total_trainset.samples]
else:
raise ValueError('invalid dataset name=%s' % dataset)
train_sampler = None
if split > 0.0:
sss = StratifiedShuffleSplit(n_splits=5, test_size=split, random_state=0)
sss = sss.split(list(range(len(total_trainset))), total_trainset.targets)
for _ in range(split_idx + 1):
train_idx, valid_idx = next(sss)
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetSampler(valid_idx)
else:
valid_sampler = SubsetSampler([])
trainloader = torch.utils.data.DataLoader(
total_trainset, batch_size=batch, shuffle=True if train_sampler is None else False, num_workers = 16, pin_memory=True,
sampler=train_sampler, drop_last=True)
validloader = torch.utils.data.DataLoader(
total_trainset, batch_size=batch, shuffle=False, num_workers = 16, pin_memory=True,
sampler=valid_sampler, drop_last=False)
testloader = torch.utils.data.DataLoader(
testset, batch_size=batch, shuffle=False, num_workers = 16, pin_memory=True,
drop_last=False
)
return train_sampler, trainloader, validloader, testloader
class SubsetSampler(Sampler):
r"""Samples elements from a given list of indices, without replacement.
Arguments:
indices (sequence): a sequence of indices
"""
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return (i for i in self.indices)
def __len__(self):
return len(self.indices)
def get_val_test_dataloader(dataset, batch, dataroot, split = 0.1):
if 'cifar' in dataset or 'svhn' in dataset:
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(_CIFAR_MEAN, _CIFAR_STD),
])
elif 'imagenet' in dataset:
transform_test = transforms.Compose([
transforms.Resize(256, interpolation=Image.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
else:
raise ValueError('dataset=%s' % dataset)
if dataset == 'cifar10' or dataset == 'reduced_cifar10':
total_trainset = torchvision.datasets.CIFAR10(root=dataroot, train=True, download=True, transform=transform_test)
testset = torchvision.datasets.CIFAR10(root=dataroot, train=False, download=True, transform=transform_test)
elif dataset == 'cifar100':
total_trainset = torchvision.datasets.CIFAR100(root=dataroot, train=True, download=True, transform=transform_test)
testset = torchvision.datasets.CIFAR100(root=dataroot, train=False, download=True, transform=transform_test)
elif dataset == 'svhn':
trainset = torchvision.datasets.SVHN(root=dataroot, split='train', download=True, transform=transform_test)
extraset = torchvision.datasets.SVHN(root=dataroot, split='extra', download=True, transform=transform_test)
total_trainset = ConcatDataset([trainset, extraset])
testset = torchvision.datasets.SVHN(root=dataroot, split='test', download=True, transform=transform_test)
elif dataset == 'svhn' or dataset == 'svhn_core':
total_trainset = torchvision.datasets.SVHN(root=dataroot, split='train', download=True, transform=transform_test)
total_trainset.targets = [lb for lb in total_trainset.labels]
testset = torchvision.datasets.SVHN(root=dataroot, split='test', download=True, transform=transform_test)
elif dataset == 'imagenet':
total_trainset = torchvision.datasets.ImageFolder(root=os.path.join(dataroot, 'train'), transform=transform_test)
testset = torchvision.datasets.ImageFolder(root=os.path.join(dataroot, 'val'), transform=transform_test)
total_trainset.targets = [lb for _, lb in total_trainset.samples]
else:
raise ValueError('invalid dataset name=%s' % dataset)
train_sampler = None
sss = StratifiedShuffleSplit(n_splits=1, test_size=split, random_state=0)
if dataset == 'reduced_cifar10':
sss = StratifiedShuffleSplit(n_splits=1, test_size=split/10, random_state=0)
sss = sss.split(list(range(len(total_trainset))), total_trainset.targets)
train_idx, valid_idx = next(sss)
#assuming that train idx is smaller than train index!
valid_idx = valid_idx[0:len(train_idx)]
train_sampler = SubsetSampler(train_idx)
if dataset == 'reduced_cifar10':
train_idx = train_idx[0:4000]
train_sampler = SubsetSampler(train_idx)
train_target = [total_trainset.targets[idx] for idx in train_idx]
train_target = [total_trainset.targets[idx] for idx in train_idx]
label_freq = {}
for lb in set(train_target):
label_freq[lb] = train_target.count(lb)
print(label_freq)
print("length of train idx")
print(len(train_idx))
print(len(valid_idx))
print(len(train_sampler.indices))
valid_sampler = SubsetSampler(valid_idx)
validloader = torch.utils.data.DataLoader(
total_trainset, batch_size=256, shuffle=False, num_workers=2, pin_memory=True,
sampler=valid_sampler, drop_last=False)
testloader = torch.utils.data.DataLoader(
testset, batch_size=256, shuffle=False, num_workers=2, pin_memory=True,
drop_last=False
)
return train_sampler, validloader, testloader
#fixed batch size for each data loader!
def Get_DataLoaders_Epoch_s(dataset, batch, dataroot, random_sampler, AugTypes, loader_num = 4):
loaders = []
idx_epoch = []
assert len(AugTypes) == loader_num
for idx in random_sampler:
idx_epoch.append(idx)
#turn random sample to fixed id sampler!
SubsetSampler_epoch = SubsetSampler(idx_epoch)
for i in range(loader_num):
loaders.append(get_dataloader_epoch(dataset, batch, dataroot, sampler = SubsetSampler_epoch, AugType = AugTypes[i]))
#here to delet the augmentation in the 1st loader
print(loaders[0].dataset.transform.transforms.pop(0))
return loaders
def get_dataloader_epoch(dataset, batch, dataroot, sampler=None, AugType = (2,5)):
if 'cifar' in dataset or 'svhn' in dataset:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(_CIFAR_MEAN, _CIFAR_STD),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(_CIFAR_MEAN, _CIFAR_STD),
])
elif 'imagenet' in dataset:
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224, scale=(0.08, 1.0), interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.4,
),
transforms.ToTensor(),
Lighting(0.1, _IMAGENET_PCA['eigval'], _IMAGENET_PCA['eigvec']),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.Resize(256, interpolation=Image.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
else:
raise ValueError('dataset=%s' % dataset)
#logger.debug('augmentation: %s' % C.get()['aug'])
if C.get()['aug'] == 'randaugment':
transform_train.transforms.insert(0, RandAugment(C.get()['randaug']['N'], C.get()['randaug']['M']))
elif C.get()['aug'] == 'rwaug_s':
transform_train.transforms.insert(0, RWAug_Search(C.get()['rwaug']['n'],AugType[1]))
elif C.get()['aug'] == 'randaugment_G':
transform_train.transforms.insert(0, RandAugment_G(AugType[0], AugType[1]))
elif C.get()['aug'] == 'randaugment_C':
transform_train.transforms.insert(0, RandAugment_C(AugType[0], AugType[1]))
elif C.get()['aug'] in ['default', 'inception', 'inception320','mix']:
pass
else:
raise ValueError('not found augmentations. %s' % C.get()['aug'])
if C.get()['cutout'] > 0:
transform_train.transforms.append(CutoutDefault(C.get()['cutout']))
if dataset == 'cifar10' or dataset == 'reduced_cifar10':
total_trainset = torchvision.datasets.CIFAR10(root=dataroot, train=True, download=True, transform=transform_train)
elif dataset == 'cifar100':
total_trainset = torchvision.datasets.CIFAR100(root=dataroot, train=True, download=True, transform=transform_train)
elif dataset == 'svhn':
trainset = torchvision.datasets.SVHN(root=dataroot, split='train', download=True, transform=transform_train)
extraset = torchvision.datasets.SVHN(root=dataroot, split='extra', download=True, transform=transform_train)
total_trainset = ConcatDataset([trainset, extraset])
elif dataset == 'svhn_core':
total_trainset = torchvision.datasets.SVHN(root=dataroot, split='train', download=True, transform=transform_train)
elif dataset == 'imagenet':
total_trainset = torchvision.datasets.ImageFolder(root=os.path.join(dataroot, 'train'), transform=transform_train)
# testset = torchvision.datasets.ImageFolder(root=os.path.join(dataroot, 'val'), transform=transform_test)
# total_trainset = ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), transform=transform_train)
total_trainset.targets = [lb for _, lb in total_trainset.samples]
else:
raise ValueError('invalid dataset name=%s' % dataset)
train_sampler = sampler
trainloader = torch.utils.data.DataLoader(
total_trainset, batch_size=batch, shuffle=True if train_sampler is None else False, num_workers=1, pin_memory=True,
sampler=train_sampler, drop_last=True)
return trainloader
if __name__ == '__main__':
a=[1,2,3,4,5,6,7,8]
sb=SubsetSampler(a)
for i in sb:
print(i)