-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel.py
530 lines (415 loc) · 21.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import tensorflow as tf
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, '../models'))
import tf_util
def placeholder_inputs(batch_size, num_point):
pointclouds_pl = tf.placeholder(tf.float32,
shape=(batch_size, num_point, 3))
labels_pl = tf.placeholder(tf.int32,
shape=(batch_size, num_point))
return pointclouds_pl, labels_pl
def feature_encoder(point_cloud, is_training, k=20, stride=1, scale_invariant=False, bn_decay=False):
""" ConvNet baseline, input is BxNx9 gray image """
batch_size = point_cloud.get_shape()[0].value
num_point = point_cloud.get_shape()[1].value
input_image = tf.expand_dims(point_cloud, -1)
k = 20
adj0 = tf_util.pairwise_distance(point_cloud)
nn_idx0 = tf_util.knn(adj0, k=k) # (batch, num_points, k)
if scale_invariant:
neighb0_xyz = gather_neighbour(point_cloud, nn_idx0)
xyz_tile = tf.tile(tf.expand_dims(point_cloud, axis=2), [1, 1, tf.shape(nn_idx0)[-1], 1])
relative_xyz = (xyz_tile - neighb0_xyz)
relative_dis = tf.sqrt(tf.reduce_sum(tf.square(relative_xyz), axis=-1, keepdims=True)) # # BxNxkx1
relative_dis_sum = tf.reduce_sum(relative_dis, axis=-2, keepdims=True) + 1e-7
relative_xyz_sum = tf.reduce_sum(relative_xyz, axis=-2, keepdims=True)
feature0 = tf.divide(relative_xyz_sum, relative_dis_sum)
feature = tf.tile(feature0, [1, 1, k, 1])
relative_xyz_dis = tf.divide(relative_xyz, relative_dis_sum)
edge_feature = tf.concat([feature, relative_xyz_dis - feature], axis=-1) # # rel 6
else:
edge_feature = tf_util.get_edge_feature(input_image, nn_idx=nn_idx0, k=k)
out1 = tf_util.conv2d(edge_feature, 64, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training, weight_decay=0.0,
scope='adj_conv1', bn_decay=bn_decay, is_dist=True)
out2 = tf_util.conv2d(out1, 64, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training, weight_decay=0.0,
scope='adj_conv2', bn_decay=bn_decay, is_dist=True)
net_1 = tf.reduce_max(out2, axis=-2, keep_dims=True)
# k=60
adj = tf_util.pairwise_distance(net_1)
nn_idx = tf_util.knn(adj, k=k)
edge_feature = tf_util.get_edge_feature(net_1, nn_idx=nn_idx, k=k)
out3 = tf_util.conv2d(edge_feature, 64, [1, 1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training, weight_decay=0.0,
scope='adj_conv3', bn_decay=bn_decay, is_dist=True)
out4 = tf_util.conv2d(out3, 64, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training, weight_decay=0.0,
scope='adj_conv4', bn_decay=bn_decay, is_dist=True)
net_2 = tf.reduce_max(out4, axis=-2, keep_dims=True)
adj = tf_util.pairwise_distance(net_2)
nn_idx = tf_util.knn(adj, k=k)
edge_feature = tf_util.get_edge_feature(net_2, nn_idx=nn_idx, k=k)
out5 = tf_util.conv2d(edge_feature, 64, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training, weight_decay=0.0,
scope='adj_conv5', bn_decay=bn_decay, is_dist=True)
out6 = tf_util.conv2d(out5, 64, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training, weight_decay=0.0,
scope='adj_conv6', bn_decay=bn_decay, is_dist=True)
net_3 = tf.reduce_max(out6, axis=-2, keep_dims=True)
out7 = tf_util.conv2d(tf.concat([net_1, net_2, net_3], axis=-1), 1024, [1, 1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='adj_conv7', bn_decay=bn_decay, is_dist=True)
out_max = tf_util.max_pool2d(out7, [num_point, 1], padding='VALID', scope='maxpool')
expand = tf.tile(out_max, [1, num_point, 1, 1])
concat = tf.concat(axis=3, values=[expand,
net_1,
net_2,
net_3])
return concat
def decoder(feat, is_training, scope, out_dim):
# CONV
net = tf_util.conv2d(feat, 512, [1, 1], padding='VALID', stride=[1, 1],
bn=True, is_training=is_training, scope=scope+'/conv1', is_dist=True)
net = tf_util.conv2d(net, 256, [1, 1], padding='VALID', stride=[1, 1],
bn=True, is_training=is_training, scope=scope+'/conv2', is_dist=True)
net = tf_util.dropout(
net, keep_prob=0.7, is_training=is_training, scope=scope+'/dp1')
net = tf_util.conv2d(net, out_dim, [1, 1], padding='VALID', stride=[1, 1],
is_training=is_training, activation_fn=None, scope=scope+'/conv3', is_dist=True)
net = tf.squeeze(net, [2])
return net
def get_seg_model(point_cloud, is_training, k=20, stride=1, scale_invariant=False, bn_decay=None):
feature = feature_encoder(point_cloud, is_training, k, stride, scale_invariant, bn_decay)
seg = decoder(feature, is_training, 'seg', 2)
return seg
def get_superline3d_model(point_cloud, is_training, k=20, stride=4, desc_dim=64, scale_invariant=False, bn_decay=None):
feature = feature_encoder(point_cloud, is_training, k, stride, scale_invariant, bn_decay)
seg = decoder(feature, is_training, 'seg', 2)
desp = decoder(feature, is_training, 'desp', desc_dim)
return seg, desp
def get_loss(pred, label):
""" pred: B,N,13; label: B,N """
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=label)
return tf.reduce_mean(loss)
def get_seg_loss(pred, label, pre_cal_weights):
# print(pred)
logits = tf.reshape(pred, [-1, 2])
labels = tf.reshape(label, [-1])
class_weights = tf.convert_to_tensor(pre_cal_weights, dtype=tf.float32)
one_hot_labels = tf.one_hot(labels, depth=2)
weights = tf.reduce_sum(class_weights * one_hot_labels, axis=1)
unweighted_losses = tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=one_hot_labels)
weighted_losses = unweighted_losses * weights
output_loss = tf.reduce_mean(weighted_losses)
return output_loss
def gather_neighbour(pc, neighbor_idx):
# gather the coordinates or features of neighboring points
batch_size = tf.shape(pc)[0]
num_points = tf.shape(neighbor_idx)[1]
d = pc.get_shape()[2].value
index_input = tf.reshape(neighbor_idx, shape=[batch_size, -1])
features = tf.batch_gather(pc, index_input)
features = tf.reshape(features, [batch_size, num_points, tf.shape(neighbor_idx)[-1], d])
return features
def discriminative_loss_single(prediction, correct_label_in, feature_dim,
delta_v, delta_d, param_var, param_dist, param_reg):
''' Discriminative loss for a single prediction/label pair.
:param prediction: inference of network
:param correct_label: instance label
:feature_dim: feature dimension of prediction
:param label_shape: shape of label
:param delta_v: cutoff variance distance
:param delta_d: curoff cluster distance
:param param_var: weight for intra cluster variance
:param param_dist: weight for inter cluster distances
:param param_reg: weight regularization
'''
### Reshape so pixels are aligned along a vector
#correct_label = tf.reshape(correct_label, [label_shape[1] * label_shape[0]])
reshaped_pred = tf.reshape(prediction, [-1, feature_dim])
correct_label = tf.reshape(correct_label_in, [tf.shape(reshaped_pred)[0]])
# print(correct_label_in.shape, correct_label.shape)
### Count instances
unique_labels, unique_id, counts = tf.unique_with_counts(correct_label)
counts = tf.cast(counts, tf.float32)
num_instances = tf.size(unique_labels)
segmented_sum = tf.unsorted_segment_sum(reshaped_pred, unique_id, num_instances)
mu = tf.div(segmented_sum, tf.reshape(counts, (-1, 1)))
mu_expand = tf.gather(mu, unique_id)
### Calculate l_var
#distance = tf.norm(tf.subtract(mu_expand, reshaped_pred), axis=1)
#tmp_distance = tf.subtract(reshaped_pred, mu_expand)
tmp_distance = reshaped_pred - mu_expand
distance = tf.norm(tmp_distance, ord=1, axis=1)
distance = tf.subtract(distance, delta_v)
distance = tf.clip_by_value(distance, 0., distance)
distance = tf.square(distance)
l_var = tf.unsorted_segment_sum(distance, unique_id, num_instances)
labels_sort = tf.argsort(tf.cast(unique_labels, tf.int32))
l_var = tf.gather(l_var, labels_sort[1:])
counts = tf.gather(counts, labels_sort[1:])
l_var = tf.div(l_var, counts)
# line_idx = tf.where(tf.greater(unique_labels, 0))
# l_var_line = tf.reshape(tf.gather(l_var, line_idx), [-1])
# l_var_top_k, _ = tf.nn.top_k(l_var_line, tf.cast(num_instances/4 + 1, tf.int32))
# l_var = tf.reduce_mean(l_var_top_k)
# l_var = tf.reduce_sum(l_var)
# l_var = tf.divide(l_var, tf.cast(num_instances, tf.float32))
mask0 = tf.greater(unique_labels, 0)
l_var = tf.boolean_mask(l_var, mask0)
l_var = tf.reduce_sum(l_var)
l_var = tf.divide(l_var, tf.cast(num_instances-1, tf.float32))
### Calculate l_dist
# Get distance for each pair of clusters like this:
# mu_1 - mu_1
# mu_2 - mu_1
# mu_3 - mu_1
# mu_1 - mu_2
# mu_2 - mu_2
# mu_3 - mu_2
# mu_1 - mu_3
# mu_2 - mu_3
# mu_3 - mu_3
mu = tf.boolean_mask(mu, mask0)
mu_interleaved_rep = tf.tile(mu, [num_instances-1, 1])
mu_band_rep = tf.tile(mu, [1, num_instances-1])
mu_band_rep = tf.reshape(mu_band_rep, ((num_instances-1) * (num_instances-1), feature_dim))
mu_diff = tf.subtract(mu_band_rep, mu_interleaved_rep)
# Filter out zeros from same cluster subtraction
eye = tf.eye(num_instances-1)
zero = tf.zeros(1, dtype=tf.float32)
diff_cluster_mask = tf.equal(eye, zero)
diff_cluster_mask = tf.reshape(diff_cluster_mask, [-1])
mu_diff_bool = tf.boolean_mask(mu_diff, diff_cluster_mask)
#intermediate_tensor = tf.reduce_sum(tf.abs(mu_diff),axis=1)
#zero_vector = tf.zeros(1, dtype=tf.float32)
#bool_mask = tf.not_equal(intermediate_tensor, zero_vector)
#mu_diff_bool = tf.boolean_mask(mu_diff, bool_mask)
mu_norm = tf.norm(mu_diff_bool, ord=1, axis=1)
mu_norm = tf.subtract(2. * delta_d, mu_norm)
mu_norm = tf.clip_by_value(mu_norm, 0., mu_norm)
mu_norm = tf.square(mu_norm)
# norm_k_cnt = tf.cond(tf.greater(num_instances*5, num_instances*num_instances-num_instances), lambda:(num_instances*num_instances-num_instances), lambda:(num_instances*5))
# mu_norm_top_k , _ = tf.nn.top_k(mu_norm, tf.cast(norm_k_cnt, tf.int32))
# l_dist = tf.reduce_mean(mu_norm_top_k)
l_dist = tf.reduce_mean(mu_norm)
def rt_0(): return 0.
def rt_l_dist(): return l_dist
l_dist = tf.cond(tf.equal(1, num_instances), rt_0, rt_l_dist)
### Calculate l_reg
l_reg = tf.reduce_mean(tf.norm(mu, ord=1, axis=1))
param_scale = 1.
l_var = param_var * l_var
l_dist = param_dist * l_dist
l_reg = param_reg * l_reg
loss = param_scale * (l_var + l_dist + 0*l_reg)
return loss, l_var, l_dist, l_reg
def discriminative_loss_single2(prediction, correct_label_in, feature_dim,
delta_v, delta_d, param_var, param_dist, param_reg):
''' Discriminative loss for a single prediction/label pair.
:param prediction: inference of network
:param correct_label: instance label
:feature_dim: feature dimension of prediction
:param label_shape: shape of label
:param delta_v: cutoff variance distance
:param delta_d: curoff cluster distance
:param param_var: weight for intra cluster variance
:param param_dist: weight for inter cluster distances
:param param_reg: weight regularization
'''
### Reshape so pixels are aligned along a vector
#correct_label = tf.reshape(correct_label, [label_shape[1] * label_shape[0]])
reshaped_pred = tf.reshape(prediction, [2, -1, feature_dim])
correct_label = tf.reshape(correct_label_in, [2, -1])
# print(correct_label_in.shape, correct_label.shape)
correct_label0 = correct_label[0]
reshaped_pred0 = reshaped_pred[0]
### Count instances
unique_labels, unique_id, counts = tf.unique_with_counts(correct_label0)
counts = tf.cast(counts, tf.float32)
num_instances = tf.size(unique_labels)
segmented_sum = tf.unsorted_segment_sum(reshaped_pred0, unique_id, num_instances)
labels_sort = tf.argsort(tf.cast(unique_labels, tf.int32))
segmented_sum = tf.gather(segmented_sum, labels_sort[1:])
counts = tf.gather(counts, labels_sort[1:])
mu0 = tf.div(segmented_sum, tf.reshape(counts, (-1, 1)))
# print(correct_label_in.shape, correct_label.shape)
correct_label1 = correct_label[1]
reshaped_pred1 = reshaped_pred[1]
### Count instances
unique_labels, unique_id, counts = tf.unique_with_counts(correct_label1)
counts = tf.cast(counts, tf.float32)
segmented_sum = tf.unsorted_segment_sum(reshaped_pred1, unique_id, num_instances)
labels_sort = tf.argsort(tf.cast(unique_labels, tf.int32))
segmented_sum = tf.gather(segmented_sum, labels_sort[1:])
counts = tf.gather(counts, labels_sort[1:])
mu1 = tf.div(segmented_sum, tf.reshape(counts, (-1, 1)))
### Calculate l_dist
# Get distance for each pair of clusters like this:
# mu_1 - mu_1
# mu_2 - mu_1
# mu_3 - mu_1
# mu_1 - mu_2
# mu_2 - mu_2
# mu_3 - mu_2
# mu_1 - mu_3
# mu_2 - mu_3
# mu_3 - mu_3
mu_interleaved_rep = tf.tile(mu0, [num_instances-1, 1])
mu_band_rep = tf.tile(mu1, [1, num_instances-1])
mu_band_rep = tf.reshape(mu_band_rep, ((num_instances-1) * (num_instances-1), feature_dim))
mu_diff = tf.subtract(mu_band_rep, mu_interleaved_rep)
# Filter out zeros from same cluster subtraction
eye = tf.eye(num_instances-1)
zero = tf.zeros(1, dtype=tf.float32)
one = tf.ones(1, dtype=tf.float32)
same_cluster_mask = tf.equal(eye, one)
same_cluster_mask = tf.reshape(same_cluster_mask, [-1])
diff_cluster_mask = tf.equal(eye, zero)
diff_cluster_mask = tf.reshape(diff_cluster_mask, [-1])
mu_same_bool = tf.boolean_mask(mu_diff, same_cluster_mask)
mu_same_norm = tf.norm(mu_same_bool, ord=1, axis=1)
mu_same_norm = tf.subtract(mu_same_norm, delta_v)
mu_same_norm = tf.clip_by_value(mu_same_norm, 0., mu_same_norm)
mu_same_norm = tf.square(mu_same_norm)
# same_norm_k_cnt = tf.cond(tf.greater(num_instances*5, num_instances), lambda:(num_instances), lambda:(num_instances*5))
# mu_same_norm_top_k , _ = tf.nn.top_k(mu_same_norm, tf.cast(same_norm_k_cnt, tf.int32))
# l_var = tf.reduce_mean(mu_same_norm_top_k)
# l_var = tf.reduce_mean(mu_same_norm)
# mask0 = tf.cast(tf.greater(unique_labels, 0), tf.float32)
# l_var = tf.reduce_sum(mu_same_norm*mask0)
l_var = tf.reduce_sum(mu_same_norm)
l_var = tf.divide(l_var, tf.cast(num_instances-1, tf.float32))
mu_diff_bool = tf.boolean_mask(mu_diff, diff_cluster_mask)
mu_norm = tf.norm(mu_diff_bool, ord=1, axis=1)
mu_norm = tf.subtract(2. * delta_d, mu_norm)
mu_norm = tf.clip_by_value(mu_norm, 0., mu_norm)
mu_norm = tf.square(mu_norm)
# norm_k_cnt = tf.cond(tf.greater(num_instances*5, num_instances*num_instances-num_instances), lambda:(num_instances*num_instances-num_instances), lambda:(num_instances*5))
# mu_norm_top_k , _ = tf.nn.top_k(mu_norm, tf.cast(norm_k_cnt, tf.int32))
# l_dist = tf.reduce_mean(mu_norm_top_k)
l_dist = tf.reduce_mean(mu_norm)
def rt_0(): return 0.
def rt_l_dist(): return l_dist
l_dist = tf.cond(tf.equal(1, num_instances), rt_0, rt_l_dist)
### Calculate l_reg
# l_reg = tf.reduce_mean(tf.norm(mu, ord=1, axis=1))
param_scale = 1.
l_var = param_var * l_var
l_dist = param_dist * l_dist
l_reg = param_reg * 0
loss = param_scale * (l_var + l_dist + l_reg)
return loss, l_var, l_dist, l_reg
def discriminative_loss(prediction, correct_label, feature_dim,
delta_v, delta_d, param_var, param_dist, param_reg):
''' Iterate over a batch of prediction/label and cumulate loss
:return: discriminative loss and its three components
'''
def cond(label, batch, out_loss, out_var, out_dist, out_reg, i):
return tf.less(i, tf.shape(batch)[0])
def body(label, batch, out_loss, out_var, out_dist, out_reg, i):
disc_loss, l_var, l_dist, l_reg = discriminative_loss_single(prediction[i], correct_label[i], feature_dim,
delta_v, delta_d, param_var, param_dist, param_reg)
out_loss = out_loss.write(i, disc_loss)
out_var = out_var.write(i, l_var)
out_dist = out_dist.write(i, l_dist)
out_reg = out_reg.write(i, l_reg)
return label, batch, out_loss, out_var, out_dist, out_reg, i + 1
# TensorArray is a data structure that support dynamic writing
output_ta_loss = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True)
output_ta_var = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True)
output_ta_dist = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True)
output_ta_reg = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True)
_, _, out_loss_op, out_var_op, out_dist_op, out_reg_op, _ = tf.while_loop(cond, body, [correct_label,
prediction,
output_ta_loss,
output_ta_var,
output_ta_dist,
output_ta_reg,
0])
out_loss_op = out_loss_op.stack()
out_var_op = out_var_op.stack()
out_dist_op = out_dist_op.stack()
out_reg_op = out_reg_op.stack()
disc_loss = tf.reduce_mean(out_loss_op)
l_var = tf.reduce_mean(out_var_op)
l_dist = tf.reduce_mean(out_dist_op)
l_reg = tf.reduce_mean(out_reg_op)
return disc_loss, l_var, l_dist, l_reg
def discriminative_loss2(prediction, correct_label, feature_dim,
delta_v, delta_d, param_var, param_dist, param_reg):
''' Iterate over a batch of prediction/label and cumulate loss
:return: discriminative loss and its three components
'''
def cond(label, batch, out_loss, out_var, out_dist, out_reg, i):
return tf.less(2*i, tf.shape(batch)[0])
def body(label, batch, out_loss, out_var, out_dist, out_reg, i):
disc_loss, l_var, l_dist, l_reg = discriminative_loss_single2(prediction[2*i:2*(i+1)], correct_label[2*i:2*(i+1)], feature_dim,
delta_v, delta_d, param_var, param_dist, param_reg)
out_loss = out_loss.write(i, disc_loss)
out_var = out_var.write(i, l_var)
out_dist = out_dist.write(i, l_dist)
out_reg = out_reg.write(i, l_reg)
return label, batch, out_loss, out_var, out_dist, out_reg, i + 1
# TensorArray is a data structure that support dynamic writing
output_ta_loss = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True)
output_ta_var = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True)
output_ta_dist = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True)
output_ta_reg = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True)
_, _, out_loss_op, out_var_op, out_dist_op, out_reg_op, _ = tf.while_loop(cond, body, [correct_label,
prediction,
output_ta_loss,
output_ta_var,
output_ta_dist,
output_ta_reg,
0])
out_loss_op = out_loss_op.stack()
out_var_op = out_var_op.stack()
out_dist_op = out_dist_op.stack()
out_reg_op = out_reg_op.stack()
disc_loss = tf.reduce_mean(out_loss_op)
l_var = tf.reduce_mean(out_var_op)
l_dist = tf.reduce_mean(out_dist_op)
l_reg = tf.reduce_mean(out_reg_op)
return disc_loss, l_var, l_dist, l_reg
def get_desc_loss(desp, ins_label):
feature_dim = desp.get_shape()[-1]
delta_v = 0.2
delta_d = 1.0
param_var = 1.
param_dist = 1.
param_reg = 0.0001
disc_loss, l_var, l_dist, l_reg = discriminative_loss2(desp, ins_label, feature_dim,
delta_v, delta_d, param_var, param_dist, param_reg)
disc_loss0, l_var0, l_dist0, l_reg0 = discriminative_loss(desp, ins_label, feature_dim,
delta_v, delta_d, param_var, param_dist, param_reg)
# disc_loss, l_var, l_dist, l_reg = disc_loss0, l_var0, l_dist0, l_reg0
return disc_loss, l_var, l_dist, l_reg, disc_loss0, l_var0, l_dist0, l_reg0