-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathimagenet.py
385 lines (313 loc) · 12.9 KB
/
imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import models
from importlib import import_module
import torch
import torch.nn as nn
import torch.optim as optim
from utils.options import args
import utils.common as utils
from utils.common import *
import os
import copy
import time
import math
import sys
import pdb
import numpy as np
import heapq
import random
import torch.autograd as autograd
import torch.nn.functional as F
if args.use_dali:
from data import imagenet_dali
else:
from data import imagenet
visible_gpus_str = ','.join(str(i) for i in args.gpus)
os.environ['CUDA_VISIBLE_DEVICES'] = visible_gpus_str
args.gpus = [i for i in range(len(args.gpus))]
checkpoint = utils.checkpoint(args)
now = datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S')
logger = utils.get_logger(os.path.join(args.job_dir, 'logger'+now+'.log'))
device = torch.device(f"cuda:{args.gpus[0]}") if torch.cuda.is_available() else 'cpu'
if args.label_smoothing is None:
loss_func = nn.CrossEntropyLoss().cuda()
else:
loss_func = LabelSmoothing(smoothing=args.label_smoothing)
# load training data
print('==> Preparing data..')
if args.use_dali:
def get_data_set(type='train'):
if type == 'train':
return imagenet_dali.get_imagenet_iter_dali('train', args.data_path, args.train_batch_size,
num_threads=4, crop=224, device_id=args.gpus[0], num_gpus=1)
else:
return imagenet_dali.get_imagenet_iter_dali('val', args.data_path, args.eval_batch_size,
num_threads=4, crop=224, device_id=args.gpus[0], num_gpus=1)
train_loader = get_data_set('train')
val_loader = get_data_set('test')
else:
data_tmp = imagenet.Data(args)
train_loader = data_tmp.trainLoader
val_loader = data_tmp.testLoader
def adjust_rate(epoch):
rate = 0.5 * (1 + math.cos(math.pi * epoch / args.num_epochs))
#rate = 0.1
#rate = 1 - rate
#if epoch < 10:
# rate = 0.9
#elif ech < 20:
# rate = 0.6
#else:
# rate = 0.3
#rate = 1
return 1
def train(epoch, train_loader, model, criterion, optimizer):
batch_time = utils.AverageMeter('Time', ':6.3f')
data_time = utils.AverageMeter('Data', ':6.3f')
losses = utils.AverageMeter('Loss', ':.4e')
top1 = utils.AverageMeter('Acc@1', ':6.2f')
top5 = utils.AverageMeter('Acc@5', ':6.2f')
model.train()
end = time.time()
num_iter = len(train_loader)
print_freq = num_iter // 10
i = 1
if args.arch == 'MobileNetV1':
pop_config = np.array([0] * 28)
else:
pop_config = np.array([0] * 54)
rate = adjust_rate(epoch)
logger.info("rate {}".format(rate))
for batch_idx, (images, targets) in enumerate(train_loader):
i+=1
if args.debug:
if i > 5:
break
i += 1
images = images.cuda()
targets = targets.cuda()
data_time.update(time.time() - end)
#if i % 5 == 0:
adjust_learning_rate(optimizer, epoch, batch_idx, num_iter)
# compute output
logits = model(images)
loss = loss_func(logits, targets)
# measure accuracy and record loss
prec1, prec5 = utils.accuracy(logits, targets, topk=(1, 5))
n = images.size(0)
losses.update(loss.item(), n) # accumulated loss
top1.update(prec1.item(), n)
top5.update(prec5.item(), n)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
pop_num = pop_up(model, rate)
#import pdb; pdb.set_trace()
pop_config += pop_num
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % print_freq == 0 and batch_idx != 0:
logger.info(
'Epoch[{0}]({1}/{2}): '
'Loss {loss.avg:.4f} '
'Prec@1(1,5) {top1.avg:.2f}, {top5.avg:.2f}'.format(
epoch, batch_idx, num_iter, loss=losses,
top1=top1, top5=top5))
logger.info("epoch{} pop_configuration {}".format(epoch, pop_config))
return losses.avg, top1.avg, top5.avg
def validate(val_loader, model, criterion, args):
batch_time = utils.AverageMeter('Time', ':6.3f')
losses = utils.AverageMeter('Loss', ':.4e')
top1 = utils.AverageMeter('Acc@1', ':6.2f')
top5 = utils.AverageMeter('Acc@5', ':6.2f')
num_iter = len(val_loader)
model.eval()
with torch.no_grad():
end = time.time()
i = 0
for batch_idx, (images, targets) in enumerate(val_loader):
if args.debug:
if i > 5:
break
i += 1
images = images.cuda()
targets = targets.cuda()
# compute output
logits = model(images)
loss = criterion(logits, targets)
# measure accuracy and record loss
pred1, pred5 = utils.accuracy(logits, targets, topk=(1, 5))
n = images.size(0)
losses.update(loss.item(), n)
top1.update(pred1[0], n)
top5.update(pred5[0], n)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
logger.info(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return losses.avg, top1.avg, top5.avg
def get_prune_rate(model, pr_cfg):
all_params = 0
prune_params = 0
i = 0
for name, module in model.named_modules():
if hasattr(module, "set_prune_rate"):
w = module.weight.data.detach().cpu()
params = w.size(0) * w.size(1) * w.size(2) * w.size(3)
all_params = all_params + params
prune_params += int(params * pr_cfg[i])
i += 1
logger.info('Params Compress Rate: %.2f M/%.2f M(%.2f%%)' %
((all_params - prune_params)/1000000, all_params/1000000, 100. * prune_params / all_params))
def generate_pr_cfg(model):
pr_cfg = []
if args.layerwise == 'l1':
weights = []
for name, module in model.named_modules():
if hasattr(module, "set_prune_rate") and name != "fc":
conv_weight = module.weight.data.detach().cpu()
weights.append(conv_weight.view(-1))
all_weights = torch.cat(weights, 0)
preserve_num = int(all_weights.size(0) * (1 - args.prune_rate))
preserve_weight, _ = torch.topk(torch.abs(all_weights), preserve_num)
threshold = preserve_weight[preserve_num-1]
# Based on the pruning threshold, the prune cfg of each layer is obtained
for weight in weights:
pr_cfg.append(torch.sum(torch.lt(torch.abs(weight), threshold)).item()/weight.size(0))
pr_cfg.append(0)
#import pdb; pdb.set_trace()
elif args.layerwise == 'uniform':
pr_cfg = [args.prune_rate] * 54
pr_cfg[-1] = 0
#pr_cfg = [0.32408588435374147, 0.406982421875, 0.6580403645833334, 0.5928955078125, 0.50701904296875, 0.620849609375, 0.6635199652777778, 0.67535400390625, 0.54150390625, 0.5310872395833334, 0.6903076171875, 0.530120849609375, 0.6433241102430556, 0.675872802734375, 0.7753448486328125, 0.7902069091796875, 0.7621527777777778, 0.7320709228515625, 0.6675567626953125, 0.7088962131076388, 0.637054443359375, 0.6290740966796875, 0.6652289496527778, 0.688873291015625, 0.5538864135742188, 0.7781507703993056, 0.6635284423828125, 0.8420219421386719, 0.8455886840820312, 0.8425309922960069, 0.7321853637695312, 0.8086471557617188, 0.8236796061197916, 0.7345085144042969, 0.7720527648925781, 0.8275027804904513, 0.7670669555664062, 0.7563896179199219, 0.8310869004991319, 0.7610435485839844, 0.7079086303710938, 0.8244544135199653, 0.7275924682617188, 0.6203765869140625, 0.8668539259168837, 0.7195043563842773, 0.8949909210205078, 0.7720861434936523, 0.8736118740505643, 0.7472705841064453, 0.6554927825927734, 0.885939704047309, 0.7277250289916992, 0]
return pr_cfg
def get_mask(model):
masks = []
for n, m in model.named_modules():
if hasattr(m, "set_prune_rate"):
mask = m.binary_mask()
masks.append(mask.view(-1))
all_masks = torch.cat(masks,0)
return all_masks
def pop_up(model, rate):
pop_num = []
for n, m in model.named_modules():
if hasattr(m, "set_prune_rate"):
pop_num.append(m.final_pop_up(rate))
model = model.to(device)
if len(args.gpus) != 1:
model = nn.DataParallel(model, device_ids=args.gpus)
#logger.info("epoch{} iter{} pop_configuration {}".format(epoch, iter, pop_num))
return np.array(pop_num)
def get_model(args, logger):
pr_cfg = []
print("=> Creating model '{}'".format(args.arch))
model = models.__dict__[args.arch]().to(device)
ckpt = torch.load(args.pretrained_model, map_location=device)
fc_weight = ckpt['fc.weight']
ckpt['fc.weight'] = fc_weight.view(
fc_weight.size(0), fc_weight.size(1), 1, 1)
model.load_state_dict(ckpt, strict=False)
# applying sparsity to the network
pr_cfg = generate_pr_cfg(model)
set_model_prune_rate(model, pr_cfg, logger)
if args.freeze_weights:
freeze_model_weights(model)
#model = model.to(device)
return model, pr_cfg
def main():
start_epoch = 0
best_acc = 0.0
best_acc_top1 = 0.0
model, pr_cfg = get_model(args, logger)
optimizer = get_optimizer(args, model)
model = model.to(device)
if args.resume == True:
start_epoch, best_acc = resume(args, model, optimizer)
if len(args.gpus) != 1:
model = nn.DataParallel(model, device_ids=args.gpus)
#valid_obj, test_acc_top1, test_acc = validate(
# val_loader, model, loss_func, args)
for epoch in range(start_epoch, args.num_epochs):
train_obj, train_acc_top1, train_acc = train(
epoch, train_loader, model, loss_func, optimizer)
valid_obj, test_acc_top1, test_acc = validate(
val_loader, model, loss_func, args)
is_best = best_acc < test_acc
best_acc_top1 = max(best_acc_top1, test_acc_top1)
best_acc = max(best_acc, test_acc)
model_state_dict = model.module.state_dict() if len(
args.gpus) > 1 else model.state_dict()
state = {
'state_dict': model_state_dict,
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
'epoch': epoch + 1,
'cfg': pr_cfg,
}
checkpoint.save_model(state, epoch + 1, is_best)
logger.info('Best accurary(top5): {:.3f} (top1): {:.3f}'.format(
float(best_acc), float(best_acc_top1)))
def resume(args, model, optimizer):
if os.path.exists(args.job_dir+'/checkpoint/model_last.pt'):
print(f"=> Loading checkpoint ")
checkpoint = torch.load(args.job_dir+'/checkpoint/model_last.pt')
start_epoch = checkpoint["epoch"]
best_acc = checkpoint["best_acc"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
print(f"=> Loaded checkpoint (epoch) {checkpoint['epoch']}")
return start_epoch, best_acc
else:
print(f"=> No checkpoint found at '{args.job_dir}' '/checkpoint/")
def adjust_learning_rate(optimizer, epoch, step, len_epoch):
# Warmup
if args.lr_policy == 'step':
factor = epoch // 8
#if epoch >= 5:
# factor = factor + 1
lr = args.lr * (0.1 ** factor)
elif args.lr_policy == 'cos':
lr = 0.5 * args.lr * (1 + math.cos(math.pi * epoch / args.num_epochs))
elif args.lr_policy == 'exp':
step = 1
decay = 0.96
lr = args.lr * (decay ** (epoch // step))
elif args.lr_policy == 'fixed':
lr = args.lr
else:
raise NotImplementedError
if epoch < args.warmup_length:
lr = lr * float(1 + step + epoch * len_epoch) / (5. * len_epoch)
if step == 0:
print('current learning rate:{0}'.format(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def get_optimizer(args, model):
if args.optimizer == "sgd":
parameters = list(model.named_parameters())
bn_params = [v for n, v in parameters if (
"bn" in n) and v.requires_grad]
rest_params = [v for n, v in parameters if (
"bn" not in n) and v.requires_grad]
optimizer = torch.optim.SGD(
[
{
"params": bn_params,
"weight_decay": 0 if args.no_bn_decay else args.weight_decay,
},
{"params": rest_params, "weight_decay": args.weight_decay},
],
args.lr,
momentum=0.9,
weight_decay=args.weight_decay,
nesterov=args.nesterov,
)
elif args.optimizer == "adam":
optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr
)
return optimizer
if __name__ == '__main__':
main()