You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have successfully trained yolov3 tiny with my custom dataset and I got good results. I wish to train yolov3 since it will give me better performance. However, when I train, val_loss becomes lower than the training loss(which didn't happen when I was training tiny) and suddenly for 1 epoch, it became huge e.g. 1900000 and then become small again. After training is done, I get worse results than yolov3 tiny.
Issue #128 suggests that the backbone must be changed which is confusing because it was working with yolov3 tiny.
I have successfully trained yolov3 tiny with my custom dataset and I got good results. I wish to train yolov3 since it will give me better performance. However, when I train, val_loss becomes lower than the training loss(which didn't happen when I was training tiny) and suddenly for 1 epoch, it became huge e.g. 1900000 and then become small again. After training is done, I get worse results than yolov3 tiny.
Issue #128 suggests that the backbone must be changed which is confusing because it was working with yolov3 tiny.
Training Log for yolov3:
Epoch 1/12
1/Unknown - 23s 23s/step - loss: 6968.9478 - yolo_output_0_loss: 186.8290 - yolo_output_1_loss: 744.6382 - yolo_output_2_loss: 6026.9116 - yolo_output_0_accuracy: 0.2855 - yolo_output_1_accuracy: 0.1648 - yolo_output_2_accuracy: 0.1148WARNING:tensorflow:Method (on_train_batch_end) is slow compared to the batch update (9.881543). Check your callbacks.
576/Unknown - 310s 537ms/step - loss: 84.7771 - yolo_output_0_loss: 10.7497 - yolo_output_1_loss: 13.8905 - yolo_output_2_loss: 47.7779 - yolo_output_0_accuracy: 0.3479 - yolo_output_1_accuracy: 0.2169 - yolo_output_2_accuracy: 0.1894
Epoch 00001: saving model to /storage/4_2734_2734_8/checkpoint/yolov3_train_1.tf
576/576 [==============================] - 343s 596ms/step - loss: 84.7771 - yolo_output_0_loss: 10.7497 - yolo_output_1_loss: 13.8905 - yolo_output_2_loss: 47.7779 - yolo_output_0_accuracy: 0.3479 - yolo_output_1_accuracy: 0.2169 - yolo_output_2_accuracy: 0.1894 - val_loss: 0.0000e+00 - val_yolo_output_0_loss: 0.0000e+00 - val_yolo_output_1_loss: 0.0000e+00 - val_yolo_output_2_loss: 0.0000e+00 - val_yolo_output_0_accuracy: 0.0000e+00 - val_yolo_output_1_accuracy: 0.0000e+00 - val_yolo_output_2_accuracy: 0.0000e+00
Epoch 2/12
75/76 [============================>.] - ETA: 0s - loss: 23.6736 - yolo_output_0_loss: 2.7028 - yolo_output_1_loss: 5.4938 - yolo_output_2_loss: 2.4037 - yolo_output_0_accuracy: 0.2863 - yolo_output_1_accuracy: 0.2714 - yolo_output_2_accuracy: 0.2427
Epoch 00002: saving model to /storage/4_2734_2734_8/checkpoint/yolov3_train_2.tf
576/576 [==============================] - 293s 508ms/step - loss: 28.3737 - yolo_output_0_loss: 8.9154 - yolo_output_1_loss: 4.1589 - yolo_output_2_loss: 2.2028 - yolo_output_0_accuracy: 0.3038 - yolo_output_1_accuracy: 0.3737 - yolo_output_2_accuracy: 0.2008 - val_loss: 22.1670 - val_yolo_output_0_loss: 1.3184 - val_yolo_output_1_loss: 4.9361 - val_yolo_output_2_loss: 1.5103 - val_yolo_output_0_accuracy: 0.2807 - val_yolo_output_1_accuracy: 0.4644 - val_yolo_output_2_accuracy: 0.2628
Epoch 3/12
75/76 [============================>.] - ETA: 0s - loss: 25.1673 - yolo_output_0_loss: 2.0446 - yolo_output_1_loss: 3.0181 - yolo_output_2_loss: 5.6328 - yolo_output_0_accuracy: 0.3268 - yolo_output_1_accuracy: 0.4985 - yolo_output_2_accuracy: 0.2209
Epoch 00003: saving model to /storage/4_2734_2734_8/checkpoint/yolov3_train_3.tf
576/576 [==============================] - 293s 509ms/step - loss: 24.4548 - yolo_output_0_loss: 1.9194 - yolo_output_1_loss: 4.9885 - yolo_output_2_loss: 2.9414 - yolo_output_0_accuracy: 0.3136 - yolo_output_1_accuracy: 0.3630 - yolo_output_2_accuracy: 0.2768 - val_loss: 19.5821 - val_yolo_output_0_loss: 1.0245 - val_yolo_output_1_loss: 2.3920 - val_yolo_output_2_loss: 1.6807 - val_yolo_output_0_accuracy: 0.0477 - val_yolo_output_1_accuracy: 0.4376 - val_yolo_output_2_accuracy: 0.2763
Epoch 4/12
75/76 [============================>.] - ETA: 0s - loss: 21.0737 - yolo_output_0_loss: 1.4803 - yolo_output_1_loss: 3.4294 - yolo_output_2_loss: 1.7392 - yolo_output_0_accuracy: 0.3902 - yolo_output_1_accuracy: 0.4377 - yolo_output_2_accuracy: 0.2716
Epoch 00004: saving model to /storage/4_2734_2734_8/checkpoint/yolov3_train_4.tf
576/576 [==============================] - 293s 509ms/step - loss: 20.2237 - yolo_output_0_loss: 1.3930 - yolo_output_1_loss: 2.9907 - yolo_output_2_loss: 1.6747 - yolo_output_0_accuracy: 0.2919 - yolo_output_1_accuracy: 0.3557 - yolo_output_2_accuracy: 0.2483 - val_loss: 18.4381 - val_yolo_output_0_loss: 1.2762 - val_yolo_output_1_loss: 2.3767 - val_yolo_output_2_loss: 1.2190 - val_yolo_output_0_accuracy: 0.2494 - val_yolo_output_1_accuracy: 0.5417 - val_yolo_output_2_accuracy: 0.0157
Epoch 5/12
75/76 [============================>.] - ETA: 0s - loss: 19.0036 - yolo_output_0_loss: 1.3448 - yolo_output_1_loss: 2.8540 - yolo_output_2_loss: 1.3052 - yolo_output_0_accuracy: 0.2948 - yolo_output_1_accuracy: 0.4129 - yolo_output_2_accuracy: 0.1160
Epoch 00005: saving model to /storage/4_2734_2734_8/checkpoint/yolov3_train_5.tf
576/576 [==============================] - 293s 509ms/step - loss: 20.1187 - yolo_output_0_loss: 1.4060 - yolo_output_1_loss: 3.2820 - yolo_output_2_loss: 2.4093 - yolo_output_0_accuracy: 0.2607 - yolo_output_1_accuracy: 0.4378 - yolo_output_2_accuracy: 0.2370 - val_loss: 19.0202 - val_yolo_output_0_loss: 1.1777 - val_yolo_output_1_loss: 2.9172 - val_yolo_output_2_loss: 2.0744 - val_yolo_output_0_accuracy: 0.2508 - val_yolo_output_1_accuracy: 0.1830 - val_yolo_output_2_accuracy: 0.4283
Epoch 6/12
75/76 [============================>.] - ETA: 0s - loss: 18.7130 - yolo_output_0_loss: 1.5470 - yolo_output_1_loss: 2.8023 - yolo_output_2_loss: 1.5835 - yolo_output_0_accuracy: 0.2242 - yolo_output_1_accuracy: 0.4314 - yolo_output_2_accuracy: 0.4101
Epoch 00006: saving model to /storage/4_2734_2734_8/checkpoint/yolov3_train_6.tf
576/576 [==============================] - 293s 509ms/step - loss: 17.7897 - yolo_output_0_loss: 1.3377 - yolo_output_1_loss: 2.6806 - yolo_output_2_loss: 1.3562 - yolo_output_0_accuracy: 0.3075 - yolo_output_1_accuracy: 0.4350 - yolo_output_2_accuracy: 0.3706 - val_loss: 16.1347 - val_yolo_output_0_loss: 1.2345 - val_yolo_output_1_loss: 2.0828 - val_yolo_output_2_loss: 1.1010 - val_yolo_output_0_accuracy: 0.3763 - val_yolo_output_1_accuracy: 0.3905 - val_yolo_output_2_accuracy: 0.3180
Epoch 7/12
75/76 [============================>.] - ETA: 0s - loss: 17.4923 - yolo_output_0_loss: 1.3183 - yolo_output_1_loss: 3.2497 - yolo_output_2_loss: 1.2091 - yolo_output_0_accuracy: 0.3735 - yolo_output_1_accuracy: 0.3901 - yolo_output_2_accuracy: 0.4288
Epoch 00007: saving model to /storage/4_2734_2734_8/checkpoint/yolov3_train_7.tf
576/576 [==============================] - 293s 509ms/step - loss: 17.2040 - yolo_output_0_loss: 1.7552 - yolo_output_1_loss: 2.6324 - yolo_output_2_loss: 1.1916 - yolo_output_0_accuracy: 0.2556 - yolo_output_1_accuracy: 0.3421 - yolo_output_2_accuracy: 0.3569 - val_loss: 15.1383 - val_yolo_output_0_loss: 0.9417 - val_yolo_output_1_loss: 2.0549 - val_yolo_output_2_loss: 1.1000 - val_yolo_output_0_accuracy: 0.5993 - val_yolo_output_1_accuracy: 0.2978 - val_yolo_output_2_accuracy: 0.2487
Epoch 8/12
75/76 [============================>.] - ETA: 0s - loss: 15.5984 - yolo_output_0_loss: 1.2275 - yolo_output_1_loss: 2.4235 - yolo_output_2_loss: 0.9993 - yolo_output_0_accuracy: 0.2670 - yolo_output_1_accuracy: 0.2581 - yolo_output_2_accuracy: 0.4290
Epoch 00008: saving model to /storage/4_2734_2734_8/checkpoint/yolov3_train_8.tf
576/576 [==============================] - 293s 509ms/step - loss: 15.2628 - yolo_output_0_loss: 1.2862 - yolo_output_1_loss: 2.4007 - yolo_output_2_loss: 1.1596 - yolo_output_0_accuracy: 0.2183 - yolo_output_1_accuracy: 0.3268 - yolo_output_2_accuracy: 0.3042 - val_loss: 18.1469 - val_yolo_output_0_loss: 5.4874 - val_yolo_output_1_loss: 1.9249 - val_yolo_output_2_loss: 1.0867 - val_yolo_output_0_accuracy: 0.3495 - val_yolo_output_1_accuracy: 0.4882 - val_yolo_output_2_accuracy: 0.1583
Epoch 9/12
75/76 [============================>.] - ETA: 0s - loss: 23.1819 - yolo_output_0_loss: 9.6438 - yolo_output_1_loss: 2.4547 - yolo_output_2_loss: 1.2863 - yolo_output_0_accuracy: 0.1718 - yolo_output_1_accuracy: 0.4240 - yolo_output_2_accuracy: 0.1557
Epoch 00009: saving model to /storage/4_2734_2734_8/checkpoint/yolov3_train_9.tf
576/576 [==============================] - 293s 509ms/step - loss: 17.8527 - yolo_output_0_loss: 3.6907 - yolo_output_1_loss: 2.3600 - yolo_output_2_loss: 1.1514 - yolo_output_0_accuracy: 0.2988 - yolo_output_1_accuracy: 0.3024 - yolo_output_2_accuracy: 0.2733 - val_loss: 191241084.1311 - val_yolo_output_0_loss: 190961328.0000 - val_yolo_output_1_loss: 263738.1875 - val_yolo_output_2_loss: 16000.0000 - val_yolo_output_0_accuracy: 0.1795 - val_yolo_output_1_accuracy: 0.0979 - val_yolo_output_2_accuracy: 0.5285
Epoch 10/12
75/76 [============================>.] - ETA: 0s - loss: 22.2108 - yolo_output_0_loss: 6.4208 - yolo_output_1_loss: 2.6703 - yolo_output_2_loss: 1.1839 - yolo_output_0_accuracy: 0.1459 - yolo_output_1_accuracy: 0.2258 - yolo_output_2_accuracy: 0.1712
Epoch 00010: saving model to /storage/4_2734_2734_8/checkpoint/yolov3_train_10.tf
576/576 [==============================] - 293s 509ms/step - loss: 23.8357 - yolo_output_0_loss: 6.0317 - yolo_output_1_loss: 2.7543 - yolo_output_2_loss: 1.4570 - yolo_output_0_accuracy: 0.2865 - yolo_output_1_accuracy: 0.3309 - yolo_output_2_accuracy: 0.2202 - val_loss: 921.8003 - val_yolo_output_0_loss: 845.6072 - val_yolo_output_1_loss: 54.8087 - val_yolo_output_2_loss: 6.3111 - val_yolo_output_0_accuracy: 0.3375 - val_yolo_output_1_accuracy: 0.5142 - val_yolo_output_2_accuracy: 0.2554
Epoch 11/12
75/76 [============================>.] - ETA: 0s - loss: 20.9743 - yolo_output_0_loss: 2.0663 - yolo_output_1_loss: 2.8056 - yolo_output_2_loss: 1.2975 - yolo_output_0_accuracy: 0.2277 - yolo_output_1_accuracy: 0.4109 - yolo_output_2_accuracy: 0.1568
Epoch 00011: saving model to /storage/4_2734_2734_8/checkpoint/yolov3_train_11.tf
576/576 [==============================] - 293s 509ms/step - loss: 19.2025 - yolo_output_0_loss: 1.9748 - yolo_output_1_loss: 2.5246 - yolo_output_2_loss: 1.2540 - yolo_output_0_accuracy: 0.3807 - yolo_output_1_accuracy: 0.4004 - yolo_output_2_accuracy: 0.1473 - val_loss: 15.6889 - val_yolo_output_0_loss: 1.2305 - val_yolo_output_1_loss: 1.9561 - val_yolo_output_2_loss: 1.0615 - val_yolo_output_0_accuracy: 0.0113 - val_yolo_output_1_accuracy: 0.1628 - val_yolo_output_2_accuracy: 0.0702
Epoch 12/12
75/76 [============================>.] - ETA: 0s - loss: 16.2245 - yolo_output_0_loss: 1.4228 - yolo_output_1_loss: 2.4705 - yolo_output_2_loss: 1.0931 - yolo_output_0_accuracy: 0.3623 - yolo_output_1_accuracy: 0.2034 - yolo_output_2_accuracy: 0.0861
Epoch 00012: saving model to /storage/4_2734_2734_8/checkpoint/yolov3_train_12.tf
576/576 [==============================] - 293s 509ms/step - loss: 15.1621 - yolo_output_0_loss: 1.4776 - yolo_output_1_loss: 2.3831 - yolo_output_2_loss: 1.1380 - yolo_output_0_accuracy: 0.3685 - yolo_output_1_accuracy: 0.3166 - yolo_output_2_accuracy: 0.1561 - val_loss: 12.6150 - val_yolo_output_0_loss: 1.0471 - val_yolo_output_1_loss: 1.8891 - val_yolo_output_2_loss: 0.9585 - val_yolo_output_0_accuracy: 0.3480 - val_yolo_output_1_accuracy: 0.2403 - val_yolo_output_2_accuracy: 0.1155
The text was updated successfully, but these errors were encountered: