forked from facebookresearch/detr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_owen.py
243 lines (207 loc) · 10.3 KB
/
train_owen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# demo model
# Copyright (c) Owen Xing @ [email protected]
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2
from torchvision.models import resnet18, resnet34, resnet50, resnet101, resnet152
import torchvision
from torch.utils.data import DataLoader
import argparse
from pathlib import Path
import logging
import os
import shutil
import random
import numpy as np
from PIL import Image
import cv2
import math
from torchvision.ops.boxes import box_area
import torch.nn.functional as F
import torchvision
import torch.distributed as dist
from packaging import version
if version.parse(torchvision.__version__) < version.parse('0.7'):
from torchvision.ops import _new_empty_tensor
from torchvision.ops.misc import _output_size
from scipy.optimize import linear_sum_assignment
from owen_data import build, collate_fn
from owen_model import build_backbone, build_transformer, DETR
# from owen_criterion import build_matcher, SetCriterion, reduce_dict
from owen_loss import build_matcher, SetCriterion, reduce_dict
def main(args):
# create logger
if not os.path.exists("./log/"+args.name):
os.makedirs("./log/"+args.name)
else:
# stop the program if the log folder already exists
raise Exception(f"Log folder {args.name} already exists. Please use another name.")
log_filename = f'./log/{args.name}/training_log.log'
logging.basicConfig(filename=log_filename, level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
root_logger = logging.getLogger()
root_logger.addHandler(console_handler)
logging.info(f"Create logger at {log_filename}")
logging.info(f"Choose arguments: {args}")
# device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Set device to {device}")
# fix the seed
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
logging.info(f"Fix the seed {seed}")
# build dataset
dataset_train = build(image_set='train', args=args)
train_loader = DataLoader(dataset_train, batch_size=args.batch_size, num_workers=0, collate_fn=collate_fn, shuffle=False)
logging.info(f"Build train dataset with {len(dataset_train)} images")
# build backbone
backbone = build_backbone(args)
# build transformer
transformer = build_transformer(args)
model = DETR(
backbone,
transformer,
num_classes=args.num_classes,
num_queries=args.num_queries,
aux_loss=args.aux_loss,
).to(device)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.info(f"Build model. Number of parameters: {n_parameters}")
# resume training
if args.resume:
checkpoint = torch.load(args.resume, map_location=torch.device('cuda:0') if torch.cuda.is_available() else 'cpu')
model.load_state_dict(checkpoint['model'])
logging.info(f"Load model from {args.resume}")
# build criterion
matcher = build_matcher(args)
weight_dict = {'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef}
weight_dict['loss_giou'] = args.giou_loss_coef
if args.aux_loss:
aux_weight_dict = {}
for i in range(args.dec_layers - 1):
aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
losses = ['labels', 'boxes', 'cardinality']
criterion_det = SetCriterion(args.num_classes, matcher=matcher, weight_dict=weight_dict,
eos_coef=args.eos_coef, losses=losses)
criterion_det.to(device)
# build optimizer and lr scheduler
param_dicts = [
{"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
logging.info(f"Build optimizer with lr: {args.lr}, lr_backbone: {args.lr_backbone}, weight_decay: {args.weight_decay}, lr_drop: {args.lr_drop}")
logging.info("Start training ...")
for epoch in range(1, args.epochs+1):
acc_det = 0
for i, (images, targets) in enumerate(train_loader):
images = images.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
model.train()
criterion_det.train()
model.zero_grad()
optimizer.zero_grad()
# forward prop
outputs = model(images)
# calculate loss
loss_dict = criterion_det(outputs, targets)
weight_dict = criterion_det.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
acc_det += loss_value
if args.clip_max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_max_norm)
optimizer.step()
lr_scheduler.step()
acc_det /= len(train_loader)
logging.info(f"Epoch {epoch}/{args.epochs} - loss: {acc_det:2f}")
if epoch % args.save_freq == 0:
checkpoint = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args
}
torch.save(checkpoint, f'./log/{args.name}/checkpoint_{epoch}.pth')
if __name__ == '__main__':
parser = argparse.ArgumentParser('DETR training and evaluation script')
# train
parser.add_argument('--name', type=str, help='The name of the experiment')
parser.add_argument('--coco_path', help='path to COCO dataset')
parser.add_argument('--epochs', default=1, type=int)
parser.add_argument("--num_classes", type=int, required=True , help='Number of classes')
parser.add_argument("--resume", type=str, help='Resume from checkpoint')
parser.add_argument('--seed', type=int, default=42, help='The random seed')
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--num_queries', default=100, type=int,
help="Number of query slots")
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument("--save_freq", type=int, default=5, help="save every few epochs.")
# detection
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--pre_norm', action='store_true')
#Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
args = parser.parse_args()
main(args)