Skip to content

Commit

Permalink
Merge branch 'release_candidate'
Browse files Browse the repository at this point in the history
  • Loading branch information
AUTOMATIC1111 committed Jun 27, 2023
2 parents baf6946 + dbc88c9 commit 394ffa7
Show file tree
Hide file tree
Showing 102 changed files with 3,379 additions and 995 deletions.
9 changes: 6 additions & 3 deletions .eslintrc.js
Original file line number Diff line number Diff line change
Expand Up @@ -50,13 +50,14 @@ module.exports = {
globals: {
//script.js
gradioApp: "readonly",
executeCallbacks: "readonly",
onAfterUiUpdate: "readonly",
onOptionsChanged: "readonly",
onUiLoaded: "readonly",
onUiUpdate: "readonly",
onOptionsChanged: "readonly",
uiCurrentTab: "writable",
uiElementIsVisible: "readonly",
uiElementInSight: "readonly",
executeCallbacks: "readonly",
uiElementIsVisible: "readonly",
//ui.js
opts: "writable",
all_gallery_buttons: "readonly",
Expand Down Expand Up @@ -84,5 +85,7 @@ module.exports = {
// imageviewer.js
modalPrevImage: "readonly",
modalNextImage: "readonly",
// token-counters.js
setupTokenCounters: "readonly",
}
};
21 changes: 19 additions & 2 deletions .github/ISSUE_TEMPLATE/bug_report.yml
Original file line number Diff line number Diff line change
Expand Up @@ -43,8 +43,8 @@ body:
- type: input
id: commit
attributes:
label: Commit where the problem happens
description: Which commit are you running ? (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit** link at the bottom of the UI, or from the cmd/terminal if you can't launch it.)
label: Version or Commit where the problem happens
description: "Which webui version or commit are you running ? (Do not write *Latest Version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Version: v1.2.3** link at the bottom of the UI, or from the cmd/terminal if you can't launch it.)"
validations:
required: true
- type: dropdown
Expand Down Expand Up @@ -80,6 +80,23 @@ body:
- AMD GPUs (RX 5000 below)
- CPU
- Other GPUs
- type: dropdown
id: cross_attention_opt
attributes:
label: Cross attention optimization
description: What cross attention optimization are you using, Settings -> Optimizations -> Cross attention optimization
multiple: false
options:
- Automatic
- xformers
- sdp-no-mem
- sdp
- Doggettx
- V1
- InvokeAI
- "None "
validations:
required: true
- type: dropdown
id: browsers
attributes:
Expand Down
57 changes: 57 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,60 @@
## 1.4.0

### Features:
* zoom controls for inpainting
* run basic torch calculation at startup in parallel to reduce the performance impact of first generation
* option to pad prompt/neg prompt to be same length
* remove taming_transformers dependency
* custom k-diffusion scheduler settings
* add an option to show selected settings in main txt2img/img2img UI
* sysinfo tab in settings
* infer styles from prompts when pasting params into the UI
* an option to control the behavior of the above

### Minor:
* bump Gradio to 3.32.0
* bump xformers to 0.0.20
* Add option to disable token counters
* tooltip fixes & optimizations
* make it possible to configure filename for the zip download
* `[vae_filename]` pattern for filenames
* Revert discarding penultimate sigma for DPM-Solver++(2M) SDE
* change UI reorder setting to multiselect
* read version info form CHANGELOG.md if git version info is not available
* link footer API to Wiki when API is not active
* persistent conds cache (opt-in optimization)

### Extensions:
* After installing extensions, webui properly restarts the process rather than reloads the UI
* Added VAE listing to web API. Via: /sdapi/v1/sd-vae
* custom unet support
* Add onAfterUiUpdate callback
* refactor EmbeddingDatabase.register_embedding() to allow unregistering
* add before_process callback for scripts
* add ability for alwayson scripts to specify section and let user reorder those sections

### Bug Fixes:
* Fix dragging text to prompt
* fix incorrect quoting for infotext values with colon in them
* fix "hires. fix" prompt sharing same labels with txt2img_prompt
* Fix s_min_uncond default type int
* Fix for #10643 (Inpainting mask sometimes not working)
* fix bad styling for thumbs view in extra networks #10639
* fix for empty list of optimizations #10605
* small fixes to prepare_tcmalloc for Debian/Ubuntu compatibility
* fix --ui-debug-mode exit
* patch GitPython to not use leaky persistent processes
* fix duplicate Cross attention optimization after UI reload
* torch.cuda.is_available() check for SdOptimizationXformers
* fix hires fix using wrong conds in second pass if using Loras.
* handle exception when parsing generation parameters from png info
* fix upcast attention dtype error
* forcing Torch Version to 1.13.1 for RX 5000 series GPUs
* split mask blur into X and Y components, patch Outpainting MK2 accordingly
* don't die when a LoRA is a broken symlink
* allow activation of Generate Forever during generation


## 1.3.2

### Bug Fixes:
Expand Down
8 changes: 2 additions & 6 deletions extensions-builtin/LDSR/scripts/ldsr_model.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,10 @@
import os
import sys
import traceback

from basicsr.utils.download_util import load_file_from_url

from modules.upscaler import Upscaler, UpscalerData
from ldsr_model_arch import LDSR
from modules import shared, script_callbacks
from modules import shared, script_callbacks, errors
import sd_hijack_autoencoder # noqa: F401
import sd_hijack_ddpm_v1 # noqa: F401

Expand Down Expand Up @@ -51,10 +49,8 @@ def load_model(self, path: str):

try:
return LDSR(model, yaml)

except Exception:
print("Error importing LDSR:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
errors.report("Error importing LDSR", exc_info=True)
return None

def do_upscale(self, img, path):
Expand Down
5 changes: 3 additions & 2 deletions extensions-builtin/LDSR/sd_hijack_autoencoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
from torch.optim.lr_scheduler import LambdaLR

from ldm.modules.ema import LitEma
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
from vqvae_quantize import VectorQuantizer2 as VectorQuantizer
from ldm.modules.diffusionmodules.model import Encoder, Decoder
from ldm.util import instantiate_from_config

Expand Down Expand Up @@ -91,8 +91,9 @@ def init_from_ckpt(self, path, ignore_keys=None):
del sd[k]
missing, unexpected = self.load_state_dict(sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
if missing:
print(f"Missing Keys: {missing}")
if unexpected:
print(f"Unexpected Keys: {unexpected}")

def on_train_batch_end(self, *args, **kwargs):
Expand Down
4 changes: 2 additions & 2 deletions extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,9 +195,9 @@ def init_from_ckpt(self, path, ignore_keys=None, only_model=False):
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
if missing:
print(f"Missing Keys: {missing}")
if len(unexpected) > 0:
if unexpected:
print(f"Unexpected Keys: {unexpected}")

def q_mean_variance(self, x_start, t):
Expand Down
147 changes: 147 additions & 0 deletions extensions-builtin/LDSR/vqvae_quantize.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
# Vendored from https://raw.githubusercontent.com/CompVis/taming-transformers/24268930bf1dce879235a7fddd0b2355b84d7ea6/taming/modules/vqvae/quantize.py,
# where the license is as follows:
#
# Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
# OR OTHER DEALINGS IN THE SOFTWARE./

import torch
import torch.nn as nn
import numpy as np
from einops import rearrange


class VectorQuantizer2(nn.Module):
"""
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
"""

# NOTE: due to a bug the beta term was applied to the wrong term. for
# backwards compatibility we use the buggy version by default, but you can
# specify legacy=False to fix it.
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random",
sane_index_shape=False, legacy=True):
super().__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.legacy = legacy

self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices.")
else:
self.re_embed = n_e

self.sane_index_shape = sane_index_shape

def remap_to_used(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
match = (inds[:, :, None] == used[None, None, ...]).long()
new = match.argmax(-1)
unknown = match.sum(2) < 1
if self.unknown_index == "random":
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)

def unmap_to_all(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
return back.reshape(ishape)

def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
assert rescale_logits is False, "Only for interface compatible with Gumbel"
assert return_logits is False, "Only for interface compatible with Gumbel"
# reshape z -> (batch, height, width, channel) and flatten
z = rearrange(z, 'b c h w -> b h w c').contiguous()
z_flattened = z.view(-1, self.e_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z

d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))

min_encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
perplexity = None
min_encodings = None

# compute loss for embedding
if not self.legacy:
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + \
torch.mean((z_q - z.detach()) ** 2)
else:
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * \
torch.mean((z_q - z.detach()) ** 2)

# preserve gradients
z_q = z + (z_q - z).detach()

# reshape back to match original input shape
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()

if self.remap is not None:
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
min_encoding_indices = self.remap_to_used(min_encoding_indices)
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten

if self.sane_index_shape:
min_encoding_indices = min_encoding_indices.reshape(
z_q.shape[0], z_q.shape[2], z_q.shape[3])

return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

def get_codebook_entry(self, indices, shape):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
indices = indices.reshape(shape[0], -1) # add batch axis
indices = self.unmap_to_all(indices)
indices = indices.reshape(-1) # flatten again

# get quantized latent vectors
z_q = self.embedding(indices)

if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()

return z_q
4 changes: 2 additions & 2 deletions extensions-builtin/Lora/extra_networks_lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,14 +9,14 @@ def __init__(self):
def activate(self, p, params_list):
additional = shared.opts.sd_lora

if additional != "None" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
if additional != "None" and additional in lora.available_loras and not any(x for x in params_list if x.items[0] == additional):
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))

names = []
multipliers = []
for params in params_list:
assert len(params.items) > 0
assert params.items

names.append(params.items[0])
multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)
Expand Down
10 changes: 7 additions & 3 deletions extensions-builtin/Lora/lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -219,7 +219,7 @@ def load_lora(name, lora_on_disk):
else:
raise AssertionError(f"Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha")

if len(keys_failed_to_match) > 0:
if keys_failed_to_match:
print(f"Failed to match keys when loading Lora {lora_on_disk.filename}: {keys_failed_to_match}")

return lora
Expand Down Expand Up @@ -267,7 +267,7 @@ def load_loras(names, multipliers=None):
lora.multiplier = multipliers[i] if multipliers else 1.0
loaded_loras.append(lora)

if len(failed_to_load_loras) > 0:
if failed_to_load_loras:
sd_hijack.model_hijack.comments.append("Failed to find Loras: " + ", ".join(failed_to_load_loras))


Expand Down Expand Up @@ -448,7 +448,11 @@ def list_available_loras():
continue

name = os.path.splitext(os.path.basename(filename))[0]
entry = LoraOnDisk(name, filename)
try:
entry = LoraOnDisk(name, filename)
except OSError: # should catch FileNotFoundError and PermissionError etc.
errors.report(f"Failed to load LoRA {name} from {filename}", exc_info=True)
continue

available_loras[name] = entry

Expand Down
4 changes: 3 additions & 1 deletion extensions-builtin/Lora/ui_extra_networks_lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ def refresh(self):
lora.list_available_loras()

def list_items(self):
for name, lora_on_disk in lora.available_loras.items():
for index, (name, lora_on_disk) in enumerate(lora.available_loras.items()):
path, ext = os.path.splitext(lora_on_disk.filename)

alias = lora_on_disk.get_alias()
Expand All @@ -27,6 +27,8 @@ def list_items(self):
"prompt": json.dumps(f"<lora:{alias}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"local_preview": f"{path}.{shared.opts.samples_format}",
"metadata": json.dumps(lora_on_disk.metadata, indent=4) if lora_on_disk.metadata else None,
"sort_keys": {'default': index, **self.get_sort_keys(lora_on_disk.filename)},

}

def allowed_directories_for_previews(self):
Expand Down
Loading

0 comments on commit 394ffa7

Please sign in to comment.