-
Notifications
You must be signed in to change notification settings - Fork 27.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from 920232796/master
Add AltDiffusion
- Loading branch information
Showing
39 changed files
with
10,879 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
model: | ||
base_learning_rate: 1.0e-04 | ||
target: ldm.models.diffusion.ddpm.LatentDiffusion | ||
params: | ||
linear_start: 0.00085 | ||
linear_end: 0.0120 | ||
num_timesteps_cond: 1 | ||
log_every_t: 200 | ||
timesteps: 1000 | ||
first_stage_key: "jpg" | ||
cond_stage_key: "txt" | ||
image_size: 64 | ||
channels: 4 | ||
cond_stage_trainable: false # Note: different from the one we trained before | ||
conditioning_key: crossattn | ||
monitor: val/loss_simple_ema | ||
scale_factor: 0.18215 | ||
use_ema: False | ||
|
||
scheduler_config: # 10000 warmup steps | ||
target: ldm.lr_scheduler.LambdaLinearScheduler | ||
params: | ||
warm_up_steps: [ 10000 ] | ||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases | ||
f_start: [ 1.e-6 ] | ||
f_max: [ 1. ] | ||
f_min: [ 1. ] | ||
|
||
unet_config: | ||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel | ||
params: | ||
image_size: 32 # unused | ||
in_channels: 4 | ||
out_channels: 4 | ||
model_channels: 320 | ||
attention_resolutions: [ 4, 2, 1 ] | ||
num_res_blocks: 2 | ||
channel_mult: [ 1, 2, 4, 4 ] | ||
num_heads: 8 | ||
use_spatial_transformer: True | ||
transformer_depth: 1 | ||
context_dim: 768 | ||
use_checkpoint: True | ||
legacy: False | ||
|
||
first_stage_config: | ||
target: ldm.models.autoencoder.AutoencoderKL | ||
params: | ||
embed_dim: 4 | ||
monitor: val/rec_loss | ||
ddconfig: | ||
double_z: true | ||
z_channels: 4 | ||
resolution: 256 | ||
in_channels: 3 | ||
out_ch: 3 | ||
ch: 128 | ||
ch_mult: | ||
- 1 | ||
- 2 | ||
- 4 | ||
- 4 | ||
num_res_blocks: 2 | ||
attn_resolutions: [] | ||
dropout: 0.0 | ||
lossconfig: | ||
target: torch.nn.Identity | ||
|
||
cond_stage_config: | ||
target: ldm.modules.encoders.xlmr.BertSeriesModelWithTransformation | ||
params: | ||
name: "XLMR-Large" |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
from abc import abstractmethod | ||
from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset | ||
|
||
|
||
class Txt2ImgIterableBaseDataset(IterableDataset): | ||
''' | ||
Define an interface to make the IterableDatasets for text2img data chainable | ||
''' | ||
def __init__(self, num_records=0, valid_ids=None, size=256): | ||
super().__init__() | ||
self.num_records = num_records | ||
self.valid_ids = valid_ids | ||
self.sample_ids = valid_ids | ||
self.size = size | ||
|
||
print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.') | ||
|
||
def __len__(self): | ||
return self.num_records | ||
|
||
@abstractmethod | ||
def __iter__(self): | ||
pass |
Oops, something went wrong.