Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

(Optimization) Option to remove negative conditioning at low sigma values #9177

Merged
merged 3 commits into from
Apr 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion modules/processing.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ class StableDiffusionProcessing:
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
if sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)

Expand Down Expand Up @@ -140,6 +140,7 @@ def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prom
self.denoising_strength: float = denoising_strength
self.sampler_noise_scheduler_override = None
self.ddim_discretize = ddim_discretize or opts.ddim_discretize
self.s_min_uncond = s_min_uncond or opts.s_min_uncond
self.s_churn = s_churn or opts.s_churn
self.s_tmin = s_tmin or opts.s_tmin
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
Expand All @@ -162,6 +163,7 @@ def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prom
self.all_seeds = None
self.all_subseeds = None
self.iteration = 0


@property
def sd_model(self):
Expand Down
26 changes: 20 additions & 6 deletions modules/sd_samplers_kdiffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@ def combine_denoised_for_edit_model(self, x_out, cond_scale):

return denoised

def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException

Expand Down Expand Up @@ -116,6 +116,14 @@ def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
tensor = denoiser_params.text_cond
uncond = denoiser_params.text_uncond

if self.step % 2 and s_min_uncond > 0 and not is_edit_model:
# alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
sigma_threshold = s_min_uncond
if(torch.dot(sigma,sigma) < sigma.shape[0] * (sigma_threshold*sigma_threshold) ):
uncond = torch.zeros([0,0,uncond.shape[2]])
x_in=x_in[:x_in.shape[0]//2]
sigma_in=sigma_in[:sigma_in.shape[0]//2]

if tensor.shape[1] == uncond.shape[1]:
if not is_edit_model:
cond_in = torch.cat([tensor, uncond])
Expand Down Expand Up @@ -144,28 +152,31 @@ def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):

x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))

x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))
if uncond.shape[0]:
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))

denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps)
cfg_denoised_callback(denoised_params)

devices.test_for_nans(x_out, "unet")

if opts.live_preview_content == "Prompt":
sd_samplers_common.store_latent(x_out[0:uncond.shape[0]])
sd_samplers_common.store_latent(x_out[0:x_out.shape[0]-uncond.shape[0]])
elif opts.live_preview_content == "Negative prompt":
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])

if not is_edit_model:
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if uncond.shape[0]:
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
else:
denoised = x_out
else:
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)

if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised

self.step += 1

return denoised


Expand Down Expand Up @@ -244,6 +255,7 @@ def initialize(self, p):
self.model_wrap_cfg.step = 0
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.eta = p.eta if p.eta is not None else opts.eta_ancestral
self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)

k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])

Expand Down Expand Up @@ -326,6 +338,7 @@ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}

samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
Expand Down Expand Up @@ -359,7 +372,8 @@ def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, ima
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}, disable=False, callback=self.callback_state, **extra_params_kwargs))

return samples
Expand Down
1 change: 1 addition & 0 deletions modules/shared.py
Original file line number Diff line number Diff line change
Expand Up @@ -405,6 +405,7 @@ def list_samplers():
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_min_uncond': OptionInfo(0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
Expand Down
1 change: 1 addition & 0 deletions scripts/xyz_grid.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,6 +212,7 @@ def __init__(self, *args, **kwargs):
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
AxisOptionImg2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: list(sd_models.checkpoints_list)),
AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
AxisOption("Sigma Churn", float, apply_field("s_churn")),
AxisOption("Sigma min", float, apply_field("s_tmin")),
AxisOption("Sigma max", float, apply_field("s_tmax")),
Expand Down