Skip to content

Commit

Permalink
Merge pull request yl4579#11 from noisyle/upstream
Browse files Browse the repository at this point in the history
Add a webui for Inference (need gradio)
  • Loading branch information
Stardust-minus authored Sep 1, 2023
2 parents c7df4f1 + 286bdbf commit b5ba35c
Showing 1 changed file with 95 additions and 0 deletions.
95 changes: 95 additions & 0 deletions webui.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser

def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str)

assert bert.shape[-1] == len(phone)

phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)

return bert, phone, tone, language

def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
bert, phones, tones, lang_ids = get_text(text, "ZH", hps,)
with torch.no_grad():
x_tst=phones.to(device).unsqueeze(0)
tones=tones.to(device).unsqueeze(0)
lang_ids=lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids,bert, sdp_ratio=sdp_ratio
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
return audio

def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
with torch.no_grad():
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker)
return "Success", (hps.data.sampling_rate, audio)


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", default="./logs/as/G_8000.pth", help="path of your model")
parser.add_argument("-c", "--config", default="./configs/config.json", help="path of your config file")
parser.add_argument("--share", default=False, help="make link public")

args = parser.parse_args()
hps = utils.get_hparams_from_file(args.config)

device = "cuda:0" if torch.cuda.is_available() else "cpu"
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).to(device)
_ = net_g.eval()

_ = utils.load_checkpoint(args.model, net_g, None,skip_optimizer=True)

speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
app = gr.Blocks()
with app:
with gr.Row():
with gr.Column():
text = gr.TextArea(label="Text", placeholder="Input Text Here",
value="吃葡萄不吐葡萄皮,不吃葡萄倒吐葡萄皮。")
speaker = gr.Dropdown(choices=speakers, value=speakers[0], label='Speaker')
sdp_ratio = gr.Slider(minimum=0.1, maximum=2, value=0.2, step=0.1, label='SDP Ratio')
noise_scale = gr.Slider(minimum=0.1, maximum=2, value=0.5, step=0.1, label='Noise Scale')
noise_scale_w = gr.Slider(minimum=0.1, maximum=2, value=0.6, step=0.1, label='Noise Scale W')
length_scale = gr.Slider(minimum=0.1, maximum=2, value=1.2, step=0.1, label='Length Scale')
btn = gr.Button("Generate!", variant="primary")
with gr.Column():
text_output = gr.Textbox(label="Message")
audio_output = gr.Audio(label="Output Audio")

btn.click(tts_fn,
inputs=[text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale],
outputs=[text_output, audio_output])

webbrowser.open("http://127.0.0.1:7860")
app.launch(share=args.share)

0 comments on commit b5ba35c

Please sign in to comment.