forked from yl4579/StyleTTS2
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request yl4579#11 from noisyle/upstream
Add a webui for Inference (need gradio)
- Loading branch information
Showing
1 changed file
with
95 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
import torch | ||
import argparse | ||
import commons | ||
import utils | ||
from models import SynthesizerTrn | ||
from text.symbols import symbols | ||
from text import cleaned_text_to_sequence, get_bert | ||
from text.cleaner import clean_text | ||
import gradio as gr | ||
import webbrowser | ||
|
||
def get_text(text, language_str, hps): | ||
norm_text, phone, tone, word2ph = clean_text(text, language_str) | ||
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | ||
|
||
if hps.data.add_blank: | ||
phone = commons.intersperse(phone, 0) | ||
tone = commons.intersperse(tone, 0) | ||
language = commons.intersperse(language, 0) | ||
for i in range(len(word2ph)): | ||
word2ph[i] = word2ph[i] * 2 | ||
word2ph[0] += 1 | ||
bert = get_bert(norm_text, word2ph, language_str) | ||
|
||
assert bert.shape[-1] == len(phone) | ||
|
||
phone = torch.LongTensor(phone) | ||
tone = torch.LongTensor(tone) | ||
language = torch.LongTensor(language) | ||
|
||
return bert, phone, tone, language | ||
|
||
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid): | ||
bert, phones, tones, lang_ids = get_text(text, "ZH", hps,) | ||
with torch.no_grad(): | ||
x_tst=phones.to(device).unsqueeze(0) | ||
tones=tones.to(device).unsqueeze(0) | ||
lang_ids=lang_ids.to(device).unsqueeze(0) | ||
bert = bert.to(device).unsqueeze(0) | ||
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | ||
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) | ||
audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids,bert, sdp_ratio=sdp_ratio | ||
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy() | ||
return audio | ||
|
||
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale): | ||
with torch.no_grad(): | ||
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker) | ||
return "Success", (hps.data.sampling_rate, audio) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("-m", "--model", default="./logs/as/G_8000.pth", help="path of your model") | ||
parser.add_argument("-c", "--config", default="./configs/config.json", help="path of your config file") | ||
parser.add_argument("--share", default=False, help="make link public") | ||
|
||
args = parser.parse_args() | ||
hps = utils.get_hparams_from_file(args.config) | ||
|
||
device = "cuda:0" if torch.cuda.is_available() else "cpu" | ||
net_g = SynthesizerTrn( | ||
len(symbols), | ||
hps.data.filter_length // 2 + 1, | ||
hps.train.segment_size // hps.data.hop_length, | ||
n_speakers=hps.data.n_speakers, | ||
**hps.model).to(device) | ||
_ = net_g.eval() | ||
|
||
_ = utils.load_checkpoint(args.model, net_g, None,skip_optimizer=True) | ||
|
||
speaker_ids = hps.data.spk2id | ||
speakers = list(speaker_ids.keys()) | ||
app = gr.Blocks() | ||
with app: | ||
with gr.Row(): | ||
with gr.Column(): | ||
text = gr.TextArea(label="Text", placeholder="Input Text Here", | ||
value="吃葡萄不吐葡萄皮,不吃葡萄倒吐葡萄皮。") | ||
speaker = gr.Dropdown(choices=speakers, value=speakers[0], label='Speaker') | ||
sdp_ratio = gr.Slider(minimum=0.1, maximum=2, value=0.2, step=0.1, label='SDP Ratio') | ||
noise_scale = gr.Slider(minimum=0.1, maximum=2, value=0.5, step=0.1, label='Noise Scale') | ||
noise_scale_w = gr.Slider(minimum=0.1, maximum=2, value=0.6, step=0.1, label='Noise Scale W') | ||
length_scale = gr.Slider(minimum=0.1, maximum=2, value=1.2, step=0.1, label='Length Scale') | ||
btn = gr.Button("Generate!", variant="primary") | ||
with gr.Column(): | ||
text_output = gr.Textbox(label="Message") | ||
audio_output = gr.Audio(label="Output Audio") | ||
|
||
btn.click(tts_fn, | ||
inputs=[text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale], | ||
outputs=[text_output, audio_output]) | ||
|
||
webbrowser.open("http://127.0.0.1:7860") | ||
app.launch(share=args.share) |