-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
73 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Tue Jan 29 21:35:39 2019 | ||
@author: Amith R | ||
Image classification using Convolutional Neural Networks | ||
""" | ||
#DATA Pre-Processing | ||
#data set already divided into test and training set | ||
# encoding is not required | ||
# feature scaling is required | ||
# building the CNN | ||
|
||
from keras.models import Sequential | ||
from keras.layers import Convolution2D | ||
from keras.layers import MaxPooling2D | ||
from keras.layers import Flatten | ||
from keras.layers import Dense | ||
|
||
# initialising the CNN | ||
# object of sequential class | ||
classifier = Sequential() | ||
|
||
# step1 - Convolution | ||
classifier.add(Convolution2D(32,3,3,input_shape=(64,64,3),activation='relu')) | ||
# using different feature detectors | ||
|
||
#step2- MAxpooling | ||
classifier.add(MaxPooling2D(pool_size=(2,2))) | ||
#size of feature map reduced by 2 | ||
|
||
#adding a second convolutional layer to | ||
classifier.add(Convolution2D(32,3,3,activation='relu')) | ||
classifier.add(MaxPooling2D(pool_size=(2,2))) | ||
|
||
#step3 -Flattening | ||
classifier.add(Flatten()) | ||
|
||
#step4 - FullConnection | ||
#fully connected layer | ||
classifier.add(Dense(output_dim=128,activation = 'relu')) | ||
classifier.add(Dense(output_dim=1,activation = 'sigmoid')) | ||
|
||
# compliling the CNN | ||
classifier.compile (optimizer ='adam',loss='binary_crossentropy',metrics=['accuracy']) | ||
|
||
# Fitting the CNN to dataset | ||
from keras.preprocessing.image import ImageDataGenerator | ||
train_datagen = ImageDataGenerator( | ||
rescale=1./255, | ||
shear_range=0.2, | ||
zoom_range=0.2, | ||
horizontal_flip=True) | ||
#object used for augmentation | ||
test_datagen = ImageDataGenerator(rescale=1./255) | ||
|
||
training_set = train_datagen.flow_from_directory('dataset/training_set', | ||
target_size=(64,64), | ||
batch_size=32, | ||
class_mode='binary') | ||
|
||
test_set = test_datagen.flow_from_directory( | ||
'dataset/test_set', | ||
target_size=(64, 64), | ||
batch_size=32, | ||
class_mode='binary') | ||
|
||
classifier.fit_generator( | ||
training_set, | ||
samples_per_epoch=8000, #no of images in training set | ||
epochs=25, | ||
validation_data=test_set, | ||
validation_steps=2000) |