Skip to content

Commit

Permalink
Merge pull request #6 from qingqing01/dain
Browse files Browse the repository at this point in the history
DAIN for video frame interpolation
  • Loading branch information
qingqing01 authored Aug 6, 2020
2 parents c56dbd8 + e41aff1 commit 38701e3
Show file tree
Hide file tree
Showing 19 changed files with 2,486 additions and 1 deletion.
2 changes: 1 addition & 1 deletion .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -38,4 +38,4 @@
entry: python ./.copyright.hook
language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto|py)$
exclude: (?!.*third_party)^.*$
exclude: (?!.*third_party)^.*$
233 changes: 233 additions & 0 deletions applications/DAIN/demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,233 @@
import os, sys
import math
import random
import time
import glob
import shutil
import numpy as np
from imageio import imread, imsave
import cv2

import paddle.fluid as fluid

import networks
from util import *
from my_args import args

if __name__ == '__main__':

DO_MiddleBurryOther = True

video_path = args.video_path
output_path = args.output_path
frame_path_input = os.path.join(output_path, 'frames-input')
frame_path_interpolated = os.path.join(output_path, 'frames-interpolated')
frame_path_combined = os.path.join(output_path, 'frames-combined')
video_path_input = os.path.join(output_path, 'videos-input')
video_path_output = os.path.join(output_path, 'videos-output')

if not os.path.exists(output_path):
os.makedirs(output_path)
if not os.path.exists(frame_path_input):
os.makedirs(frame_path_input)
if not os.path.exists(frame_path_interpolated):
os.makedirs(frame_path_interpolated)
if not os.path.exists(frame_path_combined):
os.makedirs(frame_path_combined)
if not os.path.exists(video_path_input):
os.makedirs(video_path_input)
if not os.path.exists(video_path_output):
os.makedirs(video_path_output)

args.KEY_FRAME_THREAD = 0.
saved_model = args.saved_model

timestep = args.time_step
num_frames = int(1.0 / timestep) - 1

image = fluid.data(name='image',
shape=[2, 1, args.channels, -1, -1],
dtype='float32')
DAIN = networks.__dict__["DAIN_slowmotion"](channel=args.channels,
filter_size=args.filter_size,
timestep=args.time_step,
training=False)
out = DAIN(image)
out = out[0][1]

place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())

fetch_list = [out.name]

inference_program = fluid.default_main_program().clone(for_test=True)
inference_program = fluid.io.load_persistables(exe, saved_model,
inference_program)

if not DO_MiddleBurryOther:
sys.exit()

if video_path.endswith('.mp4'):
videos = [video_path]
else:
videos = sorted(glob.glob(os.path.join(video_path, '*.mp4')))
for cnt, vid in enumerate(videos):
print("Interpolating video:", vid)
cap = cv2.VideoCapture(vid)
fps = cap.get(cv2.CAP_PROP_FPS)
print("Old fps (frame rate): ", fps)

timestep = args.time_step
times_interp = int(1.0 / timestep)
r2 = str(int(fps) * times_interp)

print("New fps (frame rate): ", r2)

# set start and end of video
#ss = 0
#t = 10
#ss = time.strftime('%H:%M:%S', time.gmtime(ss))
#t = time.strftime('%H:%M:%S', time.gmtime(t))
#print(r, ss, t)
r = None
ss = None
t = None

out_path = dump_frames_ffmpeg(vid, frame_path_input, r, ss, t)

vidname = vid.split('/')[-1].split('.')[0]

tot_timer = AverageMeter()
proc_timer = AverageMeter()
end = time.time()

frames = sorted(glob.glob(os.path.join(out_path, '*.png')))

img = imread(frames[0])

int_width = img.shape[1]
int_height = img.shape[0]
channel = img.shape[2]
if not channel == 3:
continue

if int_width != ((int_width >> 7) << 7):
int_width_pad = (((int_width >> 7) + 1) << 7) # more than necessary
padding_left = int((int_width_pad - int_width) / 2)
padding_right = int_width_pad - int_width - padding_left
else:
int_width_pad = int_width
padding_left = 32
padding_right = 32

if int_height != ((int_height >> 7) << 7):
int_height_pad = (
((int_height >> 7) + 1) << 7) # more than necessary
padding_top = int((int_height_pad - int_height) / 2)
padding_bottom = int_height_pad - int_height - padding_top
else:
int_height_pad = int_height
padding_top = 32
padding_bottom = 32

frame_num = len(frames)
print(os.path.join(frame_path_input, vidname, '*.png'))
print('processing {} frames, from video: {}'.format(frame_num, vid))

if not os.path.exists(os.path.join(frame_path_interpolated, vidname)):
os.makedirs(os.path.join(frame_path_interpolated, vidname))
if not os.path.exists(os.path.join(frame_path_combined, vidname)):
os.makedirs(os.path.join(frame_path_combined, vidname))

for i in range(frame_num - 1):
print(frames[i])
first = frames[i]
second = frames[i + 1]

img_first = imread(first)
img_second = imread(second)
'''--------------Frame change test------------------------'''
img_first_gray = np.dot(img_first[..., :3], [0.299, 0.587, 0.114])
img_second_gray = np.dot(img_second[..., :3], [0.299, 0.587, 0.114])

img_first_gray = img_first_gray.flatten(order='C')
img_second_gray = img_second_gray.flatten(order='C')
corr = np.corrcoef(img_first_gray, img_second_gray)[0, 1]
key_frame = False
if corr < args.KEY_FRAME_THREAD:
key_frame = True
'''-------------------------------------------------------'''

X0 = img_first.astype('float32').transpose((2, 0, 1)) / 255
X1 = img_second.astype('float32').transpose((2, 0, 1)) / 255

if key_frame:
y_ = [
np.transpose(255.0 * X0.clip(0, 1.0), (1, 2, 0))
for i in range(num_frames)
]
else:
assert (X0.shape[1] == X1.shape[1])
assert (X0.shape[2] == X1.shape[2])

print("size before padding ", X0.shape)
X0 = np.pad(X0, ((0,0), (padding_top, padding_bottom), \
(padding_left, padding_right)), mode='edge')
X1 = np.pad(X1, ((0,0), (padding_top, padding_bottom), \
(padding_left, padding_right)), mode='edge')
print("size after padding ", X0.shape)

X0 = np.expand_dims(X0, axis=0)
X1 = np.expand_dims(X1, axis=0)

X0 = np.expand_dims(X0, axis=0)
X1 = np.expand_dims(X1, axis=0)

X = np.concatenate((X0, X1), axis=0)

proc_end = time.time()
o = exe.run(inference_program,
fetch_list=fetch_list,
feed={"image": X})
y_ = o[0]

proc_timer.update(time.time() - proc_end)
tot_timer.update(time.time() - end)
end = time.time()
print("*******current image process time \t " +
str(time.time() - proc_end) + "s ******")

y_ = [
np.transpose(
255.0 * item.clip(
0, 1.0)[0, :, padding_top:padding_top + int_height,
padding_left:padding_left + int_width],
(1, 2, 0)) for item in y_
]
time_offsets = [
kk * timestep for kk in range(1, 1 + num_frames, 1)
]

count = 1
for item, time_offset in zip(y_, time_offsets):
out_dir = os.path.join(
frame_path_interpolated, vidname,
"{:0>4d}_{:0>4d}.png".format(i, count))
count = count + 1
imsave(out_dir, np.round(item).astype(np.uint8))

timestep = args.time_step
num_frames = int(1.0 / timestep) - 1

input_dir = os.path.join(frame_path_input, vidname)
interpolated_dir = os.path.join(frame_path_interpolated, vidname)
combined_dir = os.path.join(frame_path_combined, vidname)
combine_frames(input_dir, interpolated_dir, combined_dir, num_frames)

frame_pattern_combined = os.path.join(frame_path_combined, vidname,
'%08d.png')
video_pattern_output = os.path.join(video_path_output, vidname + '.mp4')
if os.path.exists(video_pattern_output):
os.remove(video_pattern_output)
frames_to_video_ffmpeg(frame_pattern_combined, video_pattern_output, r2)
94 changes: 94 additions & 0 deletions applications/DAIN/my_args.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
import os
import datetime
import argparse
import numpy
import networks

modelnames = networks.__all__
# import datasets
datasetNames = ('Vimeo_90K_interp') #datasets.__all__

parser = argparse.ArgumentParser(description='DAIN')

parser.add_argument('--debug', action='store_true', help='Enable debug mode')
parser.add_argument('--netName',
type=str,
default='DAIN',
choices=modelnames,
help='model architecture: ' + ' | '.join(modelnames) +
' (default: DAIN)')

parser.add_argument('--datasetName',
default='Vimeo_90K_interp',
choices=datasetNames,
nargs='+',
help='dataset type : ' + ' | '.join(datasetNames) +
' (default: Vimeo_90K_interp)')
parser.add_argument('--video_path',
default='',
help='the path of selected videos')
parser.add_argument('--output_path', default='', help='the output root path')

parser.add_argument('--seed',
type=int,
default=1,
help='random seed (default: 1)')

parser.add_argument('--batch_size',
'-b',
type=int,
default=1,
help='batch size (default:1)')
parser.add_argument('--channels',
'-c',
type=int,
default=3,
choices=[1, 3],
help='channels of images (default:3)')
parser.add_argument('--filter_size',
'-f',
type=int,
default=4,
help='the size of filters used (default: 4)',
choices=[2, 4, 6, 5, 51])

parser.add_argument('--time_step',
type=float,
default=0.5,
help='choose the time steps')
parser.add_argument(
'--alpha',
type=float,
nargs='+',
default=[0.0, 1.0],
help=
'the ration of loss for interpolated and rectified result (default: [0.0, 1.0])'
)
parser.add_argument('--frame_rate',
type=int,
default=None,
help='frame rate of the input video')

parser.add_argument('--patience',
type=int,
default=5,
help='the patience of reduce on plateou')
parser.add_argument('--factor',
type=float,
default=0.2,
help='the factor of reduce on plateou')

parser.add_argument('--saved_model',
type=str,
default='',
help='path to the model weights')
parser.add_argument('--no-date',
action='store_true',
help='don\'t append date timestamp to folder')
parser.add_argument('--use_cuda',
default=True,
type=bool,
help='use cuda or not')
parser.add_argument('--use_cudnn', default=1, type=int, help='use cudnn or not')

args = parser.parse_args()
3 changes: 3 additions & 0 deletions applications/DAIN/networks/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from .dain import DAIN
from .dain_slowmotion import DAIN_slowmotion
__all__ = ('DAIN', 'DAIN_slowmotion')
Loading

0 comments on commit 38701e3

Please sign in to comment.