Skip to content

BarryRun/COGNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Implementation of WWW 2022 paper: Conditional Generation Net for Medication Recommendation

Folder Specification

  • mimic_env.yaml
  • src/
    • COGNet.py: train/test COGNet
    • recommend.py: some test function used for COGNet
    • COGNet_modelt.py: full model of COGNet
    • COGNet_ablation.py: ablation models of COGNet
    • train/test baselines:
      • MICRON.py
      • Other code of train/test baselines can be find here.
    • models.py: baseline models
    • util.py
    • layer.py
  • data/ (For a fair comparision, we use the same data and pre-processing scripts used in Safedrug)
    • mapping files that collected from external sources
    • other files that generated from mapping files and MIMIC dataset (we attach these files here, user could use our provided scripts to generate)
      • data_final.pkl: intermediate result
      • ddi_A_final.pkl: ddi matrix
      • ddi_matrix_H.pkl: H mask structure (This file is created by ddi_mask_H.py), used in Safedrug baseline
      • idx2ndc.pkl: idx2ndc mapping file
      • ndc2drug.pkl: ndc2drug mapping file
      • Under MIMIC Dataset policy, we are not allowed to distribute the datasets. Practioners could go to https://physionet.org/content/mimiciii/1.4/ and requrest the access to MIMIC-III dataset and then run our processing script to get the complete preprocessed dataset file.
      • voc_final.pkl: diag/prod/med dictionary
    • dataset processing scripts
      • processing.py: is used to process the MIMIC original dataset.

Step 1: Data Processing

  • Go to https://physionet.org/content/mimiciii/1.4/ to download the MIMIC-III dataset (You may need to get the certificate)

  • go into the folder and unzip three main files (PROCEDURES_ICD.csv.gz, PRESCRIPTIONS.csv.gz, DIAGNOSES_ICD.csv.gz)

  • change the path in processing.py and processing the data to get a complete records_final.pkl

    vim processing.py
    
    # line 310-312
    # med_file = '/data/mimic-iii/PRESCRIPTIONS.csv'
    # diag_file = '/data/mimic-iii/DIAGNOSES_ICD.csv'
    # procedure_file = '/data/mimic-iii/PROCEDURES_ICD.csv'
    
    python processing.py
  • run ddi_mask_H.py to get the ddi_mask_H.pkl

    python ddi_mask_H.py

Step 2: Package Dependency

  • First, install the conda

  • Then, create the conda environment through yaml file

conda env create -f mimic_env.yaml

Note: maybe you need to upgrade the PyTorch to the 1.10.0 version. (Thank Thomaswbt a lot!)

Step 3: run the code

python COGNet.py

here is the argument:

usage: COGNet.py [-h] [--Test] [--model_name MODEL_NAME]
               [--resume_path RESUME_PATH] [--lr LR]
               [--target_ddi TARGET_DDI] [--kp KP] [--dim DIM]

optional arguments:
  -h, --help            show this help message and exit
  --Test                test mode
  --model_name MODEL_NAME
                        model name
  --resume_path RESUME_PATH
                        resume path
  --lr LR               learning rate
  --batch_size          batch size 
  --emb_dim             dimension size of embedding
  --max_len             max number of recommended medications
  --beam_size           number of ways in beam search

If you cannot run the code on GPU, just change line 61, "cuda" to "cpu".

Citation

@inproceedings{wu2022cognet,
    title = {Conditional Generation Net for Medication Recommendation},
    author = {Rui Wu, Zhaopeng Qiu, Jiacheng Jiang, Guilin Qi, and Xian Wu.},
    booktitle = {{WWW} '22: The Web Conference 2022, Virtual Event, Lyon, France, April 25-29, 2022},
    year = {2022}
}

Please feel free to contact me [email protected] for any question.

Partial credit to previous reprostories:

Thank Chaoqi Yang and Junyuan Shang for releasing their codes!

Thank my mentor, Zhaopeng Qiu, for helping me complete the code.

About

[WWW 2022] "Conditional Generation Net for Medication Recommendation"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages