Skip to content

RealSR super resolution implemented with ncnn library

License

Notifications You must be signed in to change notification settings

BlueAmulet/realsr-ncnn-vulkan

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RealSR ncnn Vulkan

CI

ncnn implementation of Real-World Super-Resolution via Kernel Estimation and Noise Injection super resolution.

realsr-ncnn-vulkan uses ncnn project as the universal neural network inference framework.

Download Windows/Linux/MacOS Executable for Intel/AMD/Nvidia GPU

https://github.com/nihui/realsr-ncnn-vulkan/releases

This package includes all the binaries and models required. It is portable, so no CUDA or Caffe runtime environment is needed :)

About RealSR

Real-World Super-Resolution via Kernel Estimation and Noise Injection (CVPRW 2020)

https://github.com/jixiaozhong/RealSR

Xiaozhong Ji, Yun Cao, Ying Tai, Chengjie Wang, Jilin Li, and Feiyue Huang

Tencent YouTu Lab

Our solution is the winner of CVPR NTIRE 2020 Challenge on Real-World Super-Resolution in both tracks.

https://arxiv.org/abs/2005.01996

Usages

Example Command

realsr-ncnn-vulkan.exe -i input.jpg -o output.png -s 4

Full Usages

Usage: realsr-ncnn-vulkan -i infile -o outfile [options]...

  -h                   show this help
  -v                   verbose output
  -i input-path        input image path (jpg/png/webp) or directory
  -o output-path       output image path (png/webp) or directory
  -s scale             upscale ratio (4, default=4)
  -t tile-size         tile size (>=32/0=auto, default=0)
  -m model-path        realsr model path (default=models-DF2K_JPEG)
  -g gpu-id            gpu device to use (default=0)
  -j load:proc:save    thread count for load/proc/save (default=1:2:2)
  -x                   enable tta mode
  -f format            output image format (png/webp, default=ext/png)
  • input-path and output-path accept either file path or directory path
  • scale = scale level, 4 = upscale 4x
  • tile-size = tile size, use smaller value to reduce GPU memory usage, default selects automatically
  • load:proc:save = thread count for the three stages (image decoding + waifu2x upscaling + image encoding), using larger values may increase GPU usage and consume more GPU memory. You can tune this configuration with "4:4:4" for many small-size images, and "2:2:2" for large-size images. The default setting usually works fine for most situations. If you find that your GPU is hungry, try increasing thread count to achieve faster processing.
  • format = the format of the image to be output, png is better supported, however webp generally yields smaller file sizes, both are losslessly encoded

If you encounter crash or error, try to upgrade your GPU driver

Build from Source

  1. Download and setup the Vulkan SDK from https://vulkan.lunarg.com/
  • For Linux distributions, you can either get the essential build requirements from package manager
dnf install vulkan-headers vulkan-loader-devel
apt-get install libvulkan-dev
pacman -S vulkan-headers vulkan-icd-loader
  1. Clone this project with all submodules
git clone https://github.com/nihui/realsr-ncnn-vulkan.git
cd realsr-ncnn-vulkan
git submodule update --init --recursive
  1. Build with CMake
  • You can pass -DUSE_STATIC_MOLTENVK=ON option to avoid linking the vulkan loader library on MacOS
mkdir build
cd build
cmake ../src
cmake --build . -j 4

Sample Images

Original Image

origin

Upscale 4x with ImageMagick Lanczo4 Filter

convert origin.jpg -resize 400% output.png

browser

Upscale 4x with srmd scale=4 noise=-1

srmd-ncnn-vulkan.exe -i origin.jpg -o 4x.png -s 4 -n -1

waifu2x

Upscale 4x with realsr model=DF2K scale=4 tta=1

realsr-ncnn-vulkan.exe -i origin.jpg -o output.png -s 4 -x -m models-DF2K

realsr

Original RealSR Project

Other Open-Source Code Used

About

RealSR super resolution implemented with ncnn library

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C 88.1%
  • C++ 9.8%
  • CMake 2.1%