Skip to content

PyTorch Implement of Context Encoders: Feature Learning by Inpainting

License

Notifications You must be signed in to change notification settings

BoyuanJiang/context_encoder_pytorch

Repository files navigation

Context Encoders: Feature Learning by Inpainting

This is the Pytorch implement of CVPR 2016 paper on Context Encoders

corrupted result

1) Semantic Inpainting Demo

  1. Install PyTorch http://pytorch.org/

  2. Clone the repository

git clone https://github.com/BoyuanJiang/context_encoder_pytorch.git
  1. Demo

    Download pre-trained model on Paris Streetview from Google Drive OR BaiduNetdisk

    cp netG_streetview.pth context_encoder_pytorch/model/
    cd context_encoder_pytorch/model/
    # Inpainting a batch iamges
    python test.py --netG model/netG_streetview.pth --dataroot dataset/val --batchSize 100
    # Inpainting one image 
    python test_one.py --netG model/netG_streetview.pth --test_image result/test/cropped/065_im.png

2) Train on your own dataset

  1. Build dataset

    Put your images under dataset/train,all images should under subdirectory

    dataset/train/subdirectory1/some_images

    dataset/train/subdirectory2/some_images

    ...

    Note:For Google Policy,Paris StreetView Dataset is not public data,for research using please contact with pathak22. You can also use The Paris Dataset to train your model

  2. Train

python train.py --cuda --wtl2 0.999 --niter 200
  1. Test

    This step is similar to Semantic Inpainting Demo

About

PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages