Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Aggregate curtailment time series by area #173

Merged
merged 9 commits into from
Oct 1, 2020
93 changes: 60 additions & 33 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,13 +21,13 @@ To carry out transmission congestion analyses per scenario:
2. calculate congestion statistics;
3. display the data.

The ***[utilization_demo.ipynb][utilization]*** notebook shows the steps for
downloading, calculating and plotting the various statistics. Note that since
The ***[utilization_demo.ipynb][utilization]*** notebook shows the steps for
downloading, calculating and plotting the various statistics. Note that since
the plot outputs are meant to be interactive, they may not render on GitHub.

### B. Transmission Congestion (Surplus) Analysis
The congestion surplus for each hour can be calculated by calling
```
```python
postreise.analyze.transmission.congestion.calculate_congestion_surplus(scenario)
```
where `scenario` is a powersimdata.scenario.scenario.Scenario object in Analyze
Expand All @@ -36,14 +36,14 @@ state.
### C. Carbon Analysis
The hourly CO<sub>2</sub> emissions from a scenario may be analyzed by calling

```
```python
postreise.analyze.generation.carbon.generate_carbon_stats(scenario)
```
where `scenario` is a powersimdata.scenario.scenario.Scenario instance in the
where `scenario` is a powersimdata.scenario.scenario.Scenario instance in the
analyze state.

The resulting data frame can be summed by generator type and bus by calling
```
```python
postreise.analyze.generation.carbon.summarize_carbon_by_bus(carbon, plant)
```
where `carbon` is a pandas.DataFrame as returned by `generate_carbon_stats` and
Expand All @@ -52,51 +52,78 @@ where `carbon` is a pandas.DataFrame as returned by `generate_carbon_stats` and
### D. Curtailment Analysis
The level of curtailment for a Scenario may be calculated in several ways.



#### I. Calculating Time Series
To calculate the time-series curtailment for each solar and wind generator, call
```python
from postreise.analyze.generation.curtailment import calculate_curtailment_time_series
calculate_curtailment_time_series(scenario)
```
postreise.analyze.generation.curtailment.calculate_curtailment_time_series(scenario)
where `scenario` is a `powersimdata.scenario.scenario.Scenario` instance in the
analyze state. If you call:
```python
postreise.analyze.generation.curtailment import calculate_curtailment_time_series_by_resources
calculate_curtailment_time_series_by_resources(scenario, resources={"solar", "wind"})
```
where `scenario` is a powersimdata.scenario.scenario.Scenario instance in the
analyze state. To calculate the curtailment just for wind or solar, call
```
postreise.analyze.generation.curtailment.calculate_curtailment_time_series(scenario, resources={'wind'})
```
or
you will obtain a dictionary where the keys are solar and wind and the values are
the curtailment time-series for the associated resource.

You can also get the curtailment time-series by areas by calling:
```python
from postreise.analyze.generation.curtailment import calculate_curtailment_time_series_by_areas
calculate_curtailment_time_series_by_areas(scenario,
areas={"interconnect": {"Western", "Texas"},
"state": {"Washington", "California", "Idaho"},
"loadzone": {"Bay Area", "El Paso", "Far West"}})
```
postreise.analyze.generation.curtailment.calculate_curtailment_time_series(scenario, resources={'solar'})
this returns a dictionary where the keys are the areas and the values are the
curtailment time-series for solar and wind in the associated area.

Finally, you can group the curtailment time-series by areas and resources as follows:
```python
postreise.analyze.generation.curtailment import calculate_curtailment_time_series_by_areas_and_resources
calculate_curtailment_time_series_by_areas_and_resources(scenario,
areas={"interconnect": {"Western", "Texas"},
"state": {"Washington", "California", "Idaho"},
"loadzone": {"Bay Area", "El Paso", "Far West"}},
resources={"solar", "wind"})
```
in that case the it returns a dictionary where the keys are the areas and the values
are a dictionary where the keys are the resources and the values the curtailment
time-series for the associated area-resource pair.



#### II. Summarizing Time Series: Plant => Bus/Location
A curtailment data frame with plants as columns can be further summarized by bus
or by location (substation) with:
```
postreise.analyze.generation.curtailment.summarize_curtailment_by_bus(curtailment, grid)
```python
postreise.analyze.generation.curtailment.summarize_curtailment_by_bus(scenario)
```
or

```
postreise.analyze.generation.curtailment.summarize_curtailment_by_location(curtailment, grid)
```python
postreise.analyze.generation.curtailment.summarize_curtailment_by_location(scenario)
```

where `curtailment` is a pandas.DataFrame as returned by
`calculate_curtailment_time_series` and `grid` is a
powersimdata.input.grid.Grid instance.


#### III. Calculating Annual Curtailment Percentage
An annual average curtailment value can be found for all wind/solar plants with

```
```python
postreise.analyze.generation.curtailment.calculate_curtailment_percentage(scenario)
```
where `scenario` is a powersimdata.scenario.scenario.Scenario instance in the
where `scenario` is a `powersimdata.scenario.scenario.Scenario` instance in the
analyze state. To calculate the average curtailment just for wind or solar, call
```
postreise.analyze.generation.curtailment.calculate_curtailment_percentage(scenario, resources={'wind'})
```python
from postreise.analyze.generation.curtailment import calculate_curtailment_percentage
calculate_curtailment_percentage(scenario, resources={'wind'})
```
or
```
postreise.analyze.generation.curtailment.calculate_curtailment_percentage(scenario, resources={'solar'})
```python
from ostreise.analyze.generation.curtailment import calculate_curtailment_percentage
calculate_curtailment_percentage(scenario, resources={'solar'})
```


Expand All @@ -118,7 +145,7 @@ the same zone and using the same resource.
* Calculate the capacity factor of one resource in one zone and show result
using box plots.
* Map the shadowprice and congested branches for a given hour
* Tornado plot: Horizontal bar chart styled to show both positive and negative
* Tornado plot: Horizontal bar chart styled to show both positive and negative
values cleanly.

Check out the notebooks within the [demo][plot_notebooks] folder.
Expand All @@ -129,14 +156,14 @@ Check out the notebooks within the [demo][plot_notebooks] folder.

The `plot_carbon_map` module is used to plot carbon emissions on a map.
There are two ways it can be used:
* Map carbon emissions per bus, size scaled to emissions quantity (tons) and
* Map carbon emissions per bus, size scaled to emissions quantity (tons) and
color coded by fuel type.
* Map carbon emissions per bus for two scenarios and compare.
Comparison map color codes by increase vs. decrease from first to second
Comparison map color codes by increase vs. decrease from first to second
scenario analyzed.

The `plot_carbon_bar` module is used to make barcharts comparing carbon
The `plot_carbon_bar` module is used to make barcharts comparing carbon
emissions of two scenarios.

The `projection_helpers.py` module contains helper functions such as
The `projection_helpers.py` module contains helper functions such as
re-projection, necessary for mapping.
117 changes: 75 additions & 42 deletions postreise/analyze/check.py
Original file line number Diff line number Diff line change
@@ -1,21 +1,15 @@
import datetime

import numpy as np
import pandas as pd

from powersimdata.scenario.scenario import Scenario
from powersimdata.scenario.analyze import Analyze
from powersimdata.input.grid import Grid
from powersimdata.network.usa_tamu.constants import zones
from powersimdata.network.usa_tamu.constants.plants import (
all_resources,
renewable_resources,
)
from powersimdata.network.usa_tamu.constants.zones import (
loadzone,
state2loadzone,
abv2loadzone,
interconnect2loadzone,
abv2state,
)
from powersimdata.scenario.analyze import Analyze
from powersimdata.scenario.scenario import Scenario


def _check_data_frame(df, label):
Expand Down Expand Up @@ -85,7 +79,8 @@ def _check_areas_and_format(areas):
state name(s)/abbreviation(s) or interconnect(s).
:raises TypeError: if areas is not a list/tuple/set of str.
:raises ValueError: if areas is empty or not valid.
:return: (*set*) -- areas as a set.
:return: (*set*) -- areas as a set. State abbreviations are converted to state
names.
"""
if isinstance(areas, str):
areas = {areas}
Expand All @@ -97,20 +92,15 @@ def _check_areas_and_format(areas):
raise TypeError("areas must be a str or a list/tuple/set of str")
if len(areas) == 0:
raise ValueError("areas must be non-empty")
all_areas = (
loadzone
| set(abv2loadzone.keys())
| set(state2loadzone.keys())
| set(interconnect2loadzone.keys())
)
all_areas = zones.loadzone | zones.abv | zones.state | zones.interconnect
rouille marked this conversation as resolved.
Show resolved Hide resolved
if not areas <= all_areas:
diff = areas - all_areas
raise ValueError("invalid area(s): %s" % " | ".join(diff))

abv_in_areas = [z for z in areas if z in abv2state.keys()]
abv_in_areas = [z for z in areas if z in zones.abv]
for a in abv_in_areas:
areas.remove(a)
areas.add(abv2state[a])
areas.add(zones.abv2state[a])

return areas

Expand Down Expand Up @@ -154,28 +144,90 @@ def _check_resources_are_renewable_and_format(resources):
return resources


def _check_resources_are_in_grid(resources, grid):
def _check_areas_are_in_grid_and_format(areas, grid):
"""Ensure that list of areas are in grid.

:param dict areas: keys are area types: '*loadzone*', '*state*' or '*interconnect*'.
Values are str/list/tuple/set of areas.
:param powersimdata.input.grid.Grid grid: Grid instance.
:return: (*dict*) -- modified areas dictionary. Keys are area types ('*loadzone*',
'*state*' or '*interconnect*'). State abbreviations, if present, are converted
to state names. Values are areas as a set.
:raises TypeError: if areas is not a dict or its keys are not str.
:raises ValueError: if area type is invalid, an area in not in grid or an
invalid loadzone/state/interconnect is passed.
"""
_check_grid(grid)
if not isinstance(areas, dict):
raise TypeError("areas must be a dict")

areas_formatted = {}
for a in areas.keys():
if a in ["loadzone", "state", "interconnect"]:
areas_formatted[a] = set()

all_loadzones = set()
for k, v in areas.items():
if not isinstance(k, str):
raise TypeError("area type must be a str")
elif k == "interconnect":
interconnects = _check_areas_and_format(v)
for i in interconnects:
try:
all_loadzones.update(zones.interconnect2loadzone[i])
except KeyError:
raise ValueError("invalid interconnect: %s" % i)
areas_formatted["interconnect"].update(interconnects)
elif k == "state":
states = _check_areas_and_format(v)
for s in states:
try:
all_loadzones.update(zones.state2loadzone[s])
except KeyError:
raise ValueError("invalid state: %s" % s)
areas_formatted["state"].update(states)
elif k == "loadzone":
loadzones = _check_areas_and_format(v)
for l in loadzones:
if l not in zones.loadzone:
raise ValueError("invalid load zone: %s" % l)
all_loadzones.update(loadzones)
areas_formatted["loadzone"].update(loadzones)
else:
raise ValueError("invalid area type")

valid_loadzones = set(grid.plant["zone_name"].unique())
if not all_loadzones <= valid_loadzones:
diff = all_loadzones - valid_loadzones
raise ValueError("%s not in in grid" % " | ".join(diff))
rouille marked this conversation as resolved.
Show resolved Hide resolved

return areas_formatted


def _check_resources_are_in_grid_and_format(resources, grid):
"""Ensure that resource(s) is represented in at least one generator in the grid
used for the scenario.

:param str/list/tuple/set resources: resource(s) to analyze.
:param powersimdata.input.grid.Grid grid: a Grid instance.
:return: (*set*) -- resources as a set.
:raises ValueError: if resources is not used in scenario.
"""
_check_grid(grid)
resources = _check_resources_and_format(resources)
valid_resources = set(grid.plant["type"].unique())
if not resources <= valid_resources:
diff = resources - valid_resources
raise ValueError("%s not in in grid" % " | ".join(diff))
return resources


def _check_plants_are_in_grid(plant_id, grid):
"""Ensure that list of plant id are in grid.

:param list/tuple/set plant_id: list of plant_id.
:param list/tuple/set plant_id: list of plant id.
:param powersimdata.input.grid.Grid grid: Grid instance.
:raises TypeError: if plant_id is not a list of int or str and grid is not a Grid
object.
:raises TypeError: if plant_id is not a list of int or str.
:raises ValueError: if plant id is not in network.
"""
_check_grid(grid)
Expand All @@ -184,8 +236,6 @@ def _check_plants_are_in_grid(plant_id, grid):
and all([isinstance(p, (int, str)) for p in plant_id])
):
raise TypeError("plant_id must be a a list/tuple/set of int or str")
if not isinstance(grid, Grid):
raise TypeError("grid must be powersimdata.input.grid.Grid object")
if not set([str(p) for p in plant_id]) <= set([str(i) for i in grid.plant.index]):
raise ValueError("plant_id must be subset of plant index")

Expand Down Expand Up @@ -313,20 +363,3 @@ def _check_gencost(gencost):
for c in coef_columns:
if c not in gencost.columns:
raise ValueError("gencost of order {0} must have column {1}".format(n, c))


def _check_curtailment(curtailment, grid):
"""Ensure that curtailment is a dict of data frames, and that each key is
represented in at least one generator in grid.

:param dict curtailment: curtailment data.
:param powersimdata.input.grid.Grid grid: a Grid object.
:raises TypeError: if curtailment is not a dict and values are not data frames.
"""
if not isinstance(curtailment, dict):
raise TypeError("curtailment must be a dict")
_check_grid(grid)
resources = _check_resources_are_renewable_and_format(list(curtailment.keys()))
_check_resources_are_in_grid(resources, grid)
if not all([isinstance(v, pd.DataFrame) for v in curtailment.values()]):
raise TypeError("curtailment values must be a data frame")
9 changes: 3 additions & 6 deletions postreise/analyze/generation/capacity_value.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
from postreise.analyze.check import (
_check_scenario_is_in_analyze_state,
_check_resources_and_format,
_check_resources_are_in_grid,
_check_resources_are_in_grid_and_format,
_check_number_hours_to_analyze,
)

Expand All @@ -18,8 +17,7 @@ def calculate_NLDC(scenario, resources, hours=100):
"""
_check_scenario_is_in_analyze_state(scenario)
grid = scenario.state.get_grid()
resources = _check_resources_and_format(resources)
_check_resources_are_in_grid(resources, grid)
resources = _check_resources_are_in_grid_and_format(resources, grid)
_check_number_hours_to_analyze(scenario, hours)

# Then calculate capacity value
Expand All @@ -46,8 +44,7 @@ def calculate_net_load_peak(scenario, resources, hours=100):
"""
_check_scenario_is_in_analyze_state(scenario)
grid = scenario.state.get_grid()
resources = _check_resources_and_format(resources)
_check_resources_are_in_grid(resources, grid)
resources = _check_resources_are_in_grid_and_format(resources, grid)
_check_number_hours_to_analyze(scenario, hours)

# Then calculate capacity value
Expand Down
Loading