Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement makeSplineApprox for edges and faces #694

Merged
merged 23 commits into from
Mar 31, 2021
Merged
Show file tree
Hide file tree
Changes from 18 commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
230 changes: 198 additions & 32 deletions cadquery/cq.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@
Dict,
)
from typing_extensions import Literal

from inspect import Parameter, Signature

from .occ_impl.geom import Vector, Plane, Location
from .occ_impl.shapes import (
Expand Down Expand Up @@ -264,7 +264,15 @@ def _collectProperty(self, propName: str) -> List[CQObject]:

return list(all.values())

@overload
def split(self: T, keepTop: bool = False, keepBottom: bool = False) -> T:
...

@overload
def split(self: T, splitter: Union[T, Shape]) -> T:
...

def split(self: T, *args, **kwargs) -> T:
"""
Splits a solid on the stack into two parts, optionally keeping the separate parts.

Expand All @@ -284,28 +292,64 @@ def split(self: T, keepTop: bool = False, keepBottom: bool = False) -> T:
c = c.faces(">Y").workplane(-0.5).split(keepTop=True)
"""

if (not keepTop) and (not keepBottom):
raise ValueError("You have to keep at least one half")

solid = self.findSolid()
# split using an object
if len(args) == 1 and isinstance(args[0], (Workplane, Shape)):

maxDim = solid.BoundingBox().DiagonalLength * 10.0
topCutBox = self.rect(maxDim, maxDim)._extrude(maxDim)
bottomCutBox = self.rect(maxDim, maxDim)._extrude(-maxDim)
arg = args[0]

top = solid.cut(bottomCutBox)
bottom = solid.cut(topCutBox)
solid = self.findSolid()
tools = (
(arg,)
if isinstance(arg, Shape)
else [v for v in arg.vals() if isinstance(v, Shape)]
)
rv = [solid.split(*tools)]

if keepTop and keepBottom:
# Put both on the stack, leave original unchanged.
return self.newObject([top, bottom])
# split using the current wokrplane
else:
# Put the one we are keeping on the stack, and also update the
# context solidto the one we kept.
if keepTop:
return self.newObject([top])

# boilerplate for arg/kwarg parsing
sig = Signature(
(
Parameter(
"keepTop", Parameter.POSITIONAL_OR_KEYWORD, default=False
),
Parameter(
"keepBottom", Parameter.POSITIONAL_OR_KEYWORD, default=False
),
)
)

bound_args = sig.bind(*args, **kwargs)
bound_args.apply_defaults()

keepTop = bound_args.arguments["keepTop"]
keepBottom = bound_args.arguments["keepBottom"]
adam-urbanczyk marked this conversation as resolved.
Show resolved Hide resolved

if (not keepTop) and (not keepBottom):
raise ValueError("You have to keep at least one half")

solid = self.findSolid()

maxDim = solid.BoundingBox().DiagonalLength * 10.0
topCutBox = self.rect(maxDim, maxDim)._extrude(maxDim)
bottomCutBox = self.rect(maxDim, maxDim)._extrude(-maxDim)

top = solid.cut(bottomCutBox)
bottom = solid.cut(topCutBox)

if keepTop and keepBottom:
# Put both on the stack, leave original unchanged.
rv = [top, bottom]
else:
return self.newObject([bottom])
# Put the one we are keeping on the stack, and also update the
# context solidto the one we kept.
adam-urbanczyk marked this conversation as resolved.
Show resolved Hide resolved
if keepTop:
rv = [top]
else:
rv = [bottom]

return self.newObject(rv)

@deprecate()
def combineSolids(
Expand Down Expand Up @@ -1729,6 +1773,20 @@ def slot2D(self: T, length: float, diameter: float, angle: float = 0) -> T:

return self.eachpoint(lambda loc: slot.moved(loc), True)

def _toVectors(
self, pts: Iterable[VectorLike], includeCurrent: bool
) -> List[Vector]:

vecs = [self.plane.toWorldCoords(p) for p in pts]

if includeCurrent:
gstartPoint = self._findFromPoint(False)
allPoints = [gstartPoint] + vecs
else:
allPoints = vecs

return allPoints

def spline(
self: T,
listOfXYTuple: Iterable[VectorLike],
Expand All @@ -1742,10 +1800,9 @@ def spline(
makeWire: bool = False,
) -> T:
"""
Create a spline interpolated through the provided points.
Create a spline interpolated through the provided points (2D or 3D).

:param listOfXYTuple: points to interpolate through
:type listOfXYTuple: list of 2-tuple
:param tangents: vectors specifying the direction of the tangent to the
curve at each of the specified interpolation points.

Expand Down Expand Up @@ -1807,13 +1864,7 @@ def spline(
that cannot be correctly interpreted as a spline.
"""

vecs = [self.plane.toWorldCoords(p) for p in listOfXYTuple]

if includeCurrent:
gstartPoint = self._findFromPoint(False)
allPoints = [gstartPoint] + vecs
else:
allPoints = vecs
allPoints = self._toVectors(listOfXYTuple, includeCurrent)

if tangents:
tangents_g: Optional[Sequence[Vector]] = [
Expand Down Expand Up @@ -1844,31 +1895,146 @@ def spline(

return self.newObject([rv_w if makeWire else e])

def splineApprox(
self: T,
points: Iterable[VectorLike],
tol: Optional[float] = 1e-6,
minDeg: int = 1,
maxDeg: int = 6,
smoothing: Optional[Tuple[float, float, float]] = (1, 1, 1),
forConstruction: bool = False,
includeCurrent: bool = False,
makeWire: bool = False,
) -> T:
"""
Create a spline interpolated through the provided points (2D or 3D).

:param points: points to interpolate through
:param tol: tolerance of the algorithm (default: 1e-6)
:param minDeg: minimum spline degree (default: 1)
:param maxDeg: maximum spline degree (default: 6)
:param smoothing: optional parameters for the variational smoothing algorithm (default: (1,1,1))
:param includeCurrent: use current point as a starting point of the curve
:param makeWire: convert the resulting spline edge to a wire
:return: a Workplane object with the current point at the end of the spline

*WARNING* for advanced users.
"""

allPoints = self._toVectors(points, includeCurrent)

e = Edge.makeSplineApprox(
allPoints,
minDeg=minDeg,
maxDeg=maxDeg,
smoothing=smoothing,
**({"tol": tol} if tol else {}),
)

if makeWire:
rv_w = Wire.assembleEdges([e])
if not forConstruction:
self._addPendingWire(rv_w)
else:
if not forConstruction:
self._addPendingEdge(e)

return self.newObject([rv_w if makeWire else e])

def parametricCurve(
self: T,
func: Callable[[float], VectorLike],
N: int = 400,
start: float = 0,
stop: float = 1,
tol: float = 1e-6,
minDeg: int = 1,
maxDeg: int = 6,
smoothing: Optional[Tuple[float, float, float]] = (1, 1, 1),
makeWire: bool = True,
) -> T:
"""
Create a spline interpolated through the provided points.
Create a spline curve approximating the provided function.

:param func: function f(t) that will generate (x,y) pairs
:type func: float --> (float,float)
:param func: function f(t) that will generate (x,y,z) pairs
:type func: float --> (float,float,float)
:param N: number of points for discretization
:param start: starting value of the parameter t
:param stop: final value of the parameter t
:param tol: tolerance of the algorithm (default: 1e-3)
:param minDeg: minimum spline degree (default: 1)
:param maxDeg: maximum spline degree (default: 6)
:param smoothing: optional parameters for the variational smoothing algorithm (default: (1,1,1))
:param makeWire: convert the resulting spline edge to a wire
:return: a Workplane object with the current point unchanged

"""

diff = stop - start
allPoints = [func(start + diff * t / N) for t in range(N + 1)]
allPoints = self._toVectors(
(func(start + diff * t / N) for t in range(N + 1)), False
)

e = Edge.makeSplineApprox(
allPoints, tol=tol, smoothing=smoothing, minDeg=minDeg, maxDeg=maxDeg
)

if makeWire:
rv_w = Wire.assembleEdges([e])
self._addPendingWire(rv_w)
else:
self._addPendingEdge(e)

return self.newObject([rv_w if makeWire else e])

def parametricSurface(
self: T,
func: Callable[[float, float], VectorLike],
N: int = 20,
start: float = 0,
stop: float = 1,
tol: float = 1e-2,
minDeg: int = 1,
maxDeg: int = 6,
smoothing: Optional[Tuple[float, float, float]] = (1, 1, 1),
) -> T:
"""
Create a spline surface approximating the provided function.

:param func: function f(u,v) that will generate (x,y,z) pairs
:type func: (float,float) --> (float,float,float)
:param N: number of points for discretization in one direction
:param start: starting value of the parameters u,v
:param stop: final value of the parameters u,v
:param tol: tolerance used by the approximation algorithm (default: 1e-3)
:param minDeg: minimum spline degree (default: 1)
:param maxDeg: maximum spline degree (default: 3)
:param smoothing: optional parameters for the variational smoothing algorithm (default: (1,1,1))
:return: a Workplane object with the current point unchanged

This method might be unstable and may require tuning of the tol parameter.

"""

diff = stop - start
allPoints = []

for i in range(N + 1):
allPoints.append(
self._toVectors(
(
func(start + diff * i / N, start + diff * j / N)
for j in range(N + 1)
),
False,
)
)
adam-urbanczyk marked this conversation as resolved.
Show resolved Hide resolved

f = Face.makeSplineApprox(
allPoints, tol=tol, smoothing=smoothing, minDeg=minDeg, maxDeg=maxDeg
)

return self.spline(allPoints, includeCurrent=False, makeWire=makeWire)
return self.newObject([f])

def ellipseArc(
self: T,
Expand Down
Loading