Skip to content

Commit

Permalink
CellProfiler 4 pipeline updates
Browse files Browse the repository at this point in the history
  • Loading branch information
bethac07 committed Sep 1, 2020
1 parent 45ed189 commit eaadfe0
Show file tree
Hide file tree
Showing 26 changed files with 4,321 additions and 549 deletions.
387 changes: 387 additions & 0 deletions CellProfiler3Pipelines/ExampleImagingFlowCytometryObjectsInGrid.cppipe

Large diffs are not rendered by default.

240 changes: 240 additions & 0 deletions CellProfiler3Pipelines/ExampleNeighbors.cppipe
Original file line number Diff line number Diff line change
@@ -0,0 +1,240 @@
CellProfiler Pipeline: http://www.cellprofiler.org
Version:3
DateRevision:300
GitHash:
ModuleCount:15
HasImagePlaneDetails:False

Images:[module_num:1|svn_version:\'Unknown\'|variable_revision_number:2|show_window:False|notes:\x5B\'To begin creating your project, use the Images module to compile a list of files and/or folders that you want to analyze. You can also specify a set of rules to include only the desired files in your selected folders.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
:
Filter images?:Images only
Select the rule criteria:and (extension does isimage) (directory doesnot containregexp "\x5B\\\\\\\\\\\\\\\\/\x5D\\\\\\\\.")

Metadata:[module_num:2|svn_version:\'Unknown\'|variable_revision_number:4|show_window:False|notes:\x5B\'The Metadata module optionally allows you to extract information describing your images (i.e, metadata) which will be stored along with your measurements. This information can be contained in the file name and/or location, or in an external file.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Extract metadata?:No
Metadata data type:Text
Metadata types:{}
Extraction method count:1
Metadata extraction method:Extract from file/folder names
Metadata source:File name
Regular expression to extract from file name:^(?P<Plate>.*)_(?P<Well>\x5BA-P\x5D\x5B0-9\x5D{2})_s(?P<Site>\x5B0-9\x5D)_w(?P<ChannelNumber>\x5B0-9\x5D)
Regular expression to extract from folder name:(?P<Date>\x5B0-9\x5D{4}_\x5B0-9\x5D{2}_\x5B0-9\x5D{2})$
Extract metadata from:All images
Select the filtering criteria:and (file does contain "")
Metadata file location:
Match file and image metadata:\x5B\x5D
Use case insensitive matching?:No

NamesAndTypes:[module_num:3|svn_version:\'Unknown\'|variable_revision_number:8|show_window:False|notes:\x5B\'The NamesAndTypes module allows you to assign a meaningful name to each image by which other modules will refer to it.\', \'\\xe2\\x80\\x94\', \'Load the color image by matching files in the folder against the text \\xe2\\x80\\x98.JPG\\xe2\\x80\\x99\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Assign a name to:Images matching rules
Select the image type:Grayscale image
Name to assign these images:DNA
Match metadata:\x5B\x5D
Image set matching method:Order
Set intensity range from:Image metadata
Assignments count:1
Single images count:0
Maximum intensity:255.0
Process as 3D?:No
Relative pixel spacing in X:1.0
Relative pixel spacing in Y:1.0
Relative pixel spacing in Z:1.0
Select the rule criteria:and (file does contain "1.JPG")
Name to assign these images:Original
Name to assign these objects:Cell
Select the image type:Color image
Set intensity range from:Image metadata
Maximum intensity:255.0

Groups:[module_num:4|svn_version:\'Unknown\'|variable_revision_number:2|show_window:False|notes:\x5B\'The Groups module optionally allows you to split your list of images into image subsets (groups) which will be processed independently of each other. Examples of groupings include screening batches, microtiter plates, time-lapse movies, etc.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Do you want to group your images?:No
grouping metadata count:1
Metadata category:None

Crop:[module_num:5|svn_version:\'Unknown\'|variable_revision_number:3|show_window:True|notes:\x5B\'Crop the color image to exclude the text labels by entering specific cropping coordinates.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Original
Name the output image:Cropped
Select the cropping shape:Rectangle
Select the cropping method:Coordinates
Apply which cycle\'s cropping pattern?:First
Left and right rectangle positions:45,629
Top and bottom rectangle positions:1,445
Coordinates of ellipse center:500,500
Ellipse radius, X direction:400
Ellipse radius, Y direction:200
Remove empty rows and columns?:No
Select the masking image:None
Select the image with a cropping mask:None
Select the objects:None

ColorToGray:[module_num:6|svn_version:\'Unknown\'|variable_revision_number:3|show_window:True|notes:\x5B\'Retain the red channel for later segmentation.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Cropped
Conversion method:Split
Image type:RGB
Name the output image:OrigGray
Relative weight of the red channel:1.0
Relative weight of the green channel:1.0
Relative weight of the blue channel:1.0
Convert red to gray?:Yes
Name the output image:OrigRed
Convert green to gray?:No
Name the output image:OrigGreen
Convert blue to gray?:No
Name the output image:OrigBlue
Convert hue to gray?:Yes
Name the output image:OrigHue
Convert saturation to gray?:Yes
Name the output image:OrigSaturation
Convert value to gray?:Yes
Name the output image:OrigValue
Channel count:1
Channel number:Red\x3A 1
Relative weight of the channel:1.0
Image name:Channel1

ImageMath:[module_num:7|svn_version:\'Unknown\'|variable_revision_number:4|show_window:True|notes:\x5B\'Since object identification assumes light objects against a dark background, invert the grayscale intensities of the red channel so the dark areas appear bright and vice versa.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Operation:Invert
Raise the power of the result by:1.0
Multiply the result by:1.0
Add to result:0.0
Set values less than 0 equal to 0?:Yes
Set values greater than 1 equal to 1?:Yes
Ignore the image masks?:No
Name the output image:InvertedRed
Image or measurement?:Image
Select the first image:OrigRed
Multiply the first image by:1.0
Measurement:
Image or measurement?:Image
Select the second image:
Multiply the second image by:1.0
Measurement:

IdentifyPrimaryObjects:[module_num:8|svn_version:\'Unknown\'|variable_revision_number:13|show_window:True|notes:\x5B\'Identify the individual cells. Three-class thresholding works better than the default two-class method. Some adjustment of the correction factor, smoothing filter size and maxima supression distance is required to optimize segmentation.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:InvertedRed
Name the primary objects to be identified:Cells
Typical diameter of objects, in pixel units (Min,Max):5,9999
Discard objects outside the diameter range?:Yes
Discard objects touching the border of the image?:Yes
Method to distinguish clumped objects:Intensity
Method to draw dividing lines between clumped objects:Intensity
Size of smoothing filter:4
Suppress local maxima that are closer than this minimum allowed distance:4
Speed up by using lower-resolution image to find local maxima?:Yes
Fill holes in identified objects?:After both thresholding and declumping
Automatically calculate size of smoothing filter for declumping?:No
Automatically calculate minimum allowed distance between local maxima?:No
Handling of objects if excessive number of objects identified:Continue
Maximum number of objects:500
Use advanced settings?:Yes
Threshold setting version:10
Threshold strategy:Global
Thresholding method:Otsu
Threshold smoothing scale:1.3488
Threshold correction factor:0.8
Lower and upper bounds on threshold:0.0,1.0
Manual threshold:0.0
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Three classes
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:50
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2.0
Thresholding method:Otsu

OverlayOutlines:[module_num:9|svn_version:\'Unknown\'|variable_revision_number:4|show_window:True|notes:\x5B\'Overlay the cell outlines in the inverted image.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Display outlines on a blank image?:No
Select image on which to display outlines:InvertedRed
Name the output image:InvertedRedOutlines
Outline display mode:Color
Select method to determine brightness of outlines:Max of image
How to outline:Inner
Select outline color:Red
Select objects to display:Cells

MeasureObjectNeighbors:[module_num:10|svn_version:\'Unknown\'|variable_revision_number:2|show_window:True|notes:\x5B\'Obtain neighborhood metrics by expanding the cells until they touch. Retain an output image for later export.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Select objects to measure:Cells
Select neighboring objects to measure:Cells
Method to determine neighbors:Expand until adjacent
Neighbor distance:5
Retain the image of objects colored by numbers of neighbors?:Yes
Name the output image:ColorNeighbors
Select colormap:hot
Retain the image of objects colored by percent of touching pixels?:No
Name the output image:PercentTouching
Select colormap:Default

MeasureObjectSizeShape:[module_num:11|svn_version:\'Unknown\'|variable_revision_number:1|show_window:True|notes:\x5B\'Measure morphological features from the cell objects.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Select objects to measure:Cells
Calculate the Zernike features?:No

MeasureObjectIntensity:[module_num:12|svn_version:\'Unknown\'|variable_revision_number:3|show_window:True|notes:\x5B\'Measure intensity features from cell objects against the red channel.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Hidden:1
Select an image to measure:OrigRed
Select objects to measure:Cells

SaveImages:[module_num:13|svn_version:\'Unknown\'|variable_revision_number:13|show_window:True|notes:\x5B\'Save the neighbor output image as an 8-bit TIF, appending the text \\xe2\\x80\\x98colorneighbors\\xe2\\x80\\x99 to the original filename of the color image.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Select the type of image to save:Image
Select the image to save:ColorNeighbors
Select method for constructing file names:From image filename
Select image name for file prefix:Original
Enter single file name:OrigBlue
Number of digits:4
Append a suffix to the image file name?:Yes
Text to append to the image name:_ColorNeighbors
Saved file format:png
Output file location:Default Output Folder\x7C
Image bit depth:8-bit integer
Overwrite existing files without warning?:No
When to save:Every cycle
Record the file and path information to the saved image?:No
Create subfolders in the output folder?:No
Base image folder:Elsewhere...\x7C

SaveImages:[module_num:14|svn_version:\'Unknown\'|variable_revision_number:13|show_window:True|notes:\x5B\'Save the overlay image as an 8-bit TIF, appending the text \\xe2\\x80\\x98invertedred\\xe2\\x80\\x99 to the original filename of the color image.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Select the type of image to save:Image
Select the image to save:InvertedRedOutlines
Select method for constructing file names:From image filename
Select image name for file prefix:Original
Enter single file name:OrigBlue
Number of digits:4
Append a suffix to the image file name?:Yes
Text to append to the image name:_InvertedRed
Saved file format:png
Output file location:Default Output Folder\x7C
Image bit depth:8-bit integer
Overwrite existing files without warning?:No
When to save:Every cycle
Record the file and path information to the saved image?:No
Create subfolders in the output folder?:No
Base image folder:Elsewhere...\x7C

ExportToSpreadsheet:[module_num:15|svn_version:\'Unknown\'|variable_revision_number:12|show_window:True|notes:\x5B\'Export any measurements to a comma-delimited file (.csv). The measurements made for the cell objects and the image will be saved to separate .csv files. Mean per-image cell measurements will also be exported to the image .csv.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
Select the column delimiter:Comma (",")
Add image metadata columns to your object data file?:No
Select the measurements to export:No
Calculate the per-image mean values for object measurements?:Yes
Calculate the per-image median values for object measurements?:No
Calculate the per-image standard deviation values for object measurements?:No
Output file location:Default Output Folder\x7C
Create a GenePattern GCT file?:No
Select source of sample row name:Metadata
Select the image to use as the identifier:None
Select the metadata to use as the identifier:None
Export all measurement types?:No
Press button to select measurements:
Representation of Nan/Inf:NaN
Add a prefix to file names?:No
Filename prefix:MyExpt_
Overwrite existing files without warning?:Yes
Data to export:Image
Combine these object measurements with those of the previous object?:No
File name:DATA.csv
Use the object name for the file name?:Yes
Data to export:Cells
Combine these object measurements with those of the previous object?:No
File name:DATA.csv
Use the object name for the file name?:Yes
Loading

0 comments on commit eaadfe0

Please sign in to comment.