Skip to content

ChengxiHAN/C2F-SemiCD-and-C2FNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

8d203cc · Apr 25, 2024

History

40 Commits
Mar 24, 2024
Mar 25, 2024
Mar 24, 2024
Mar 25, 2024
Apr 25, 2024
Mar 24, 2024
Mar 25, 2024
Mar 25, 2024
Mar 24, 2024
Mar 25, 2024
Mar 24, 2024
Mar 24, 2024
Mar 26, 2024

Repository files navigation

C2F-SemiCD-and-C2FNet:https://chengxihan.github.io/

C2F-SemiCD:A Semi-Supervised CD method

C2FNet:A Supervised CD method

The Pytorch implementation for: “C2F-SemiCD and C2FNet: A coarse-to-fine semi-supervised change detection method based on consistency regularization in High-Resolution Remote-Sensing Images,” IEEE Transactions on Geoscience and Remote Sensing(TGRS), 2024, DOI: 10.1109/TGRS.2024.3370568.Chengxi Han,Chen Wu,Meiqi Hu,Jiepan Li,Hongruixuan Chen

PWC PWC PWC PWC

PWC PWC PWC PWC

PWC PWC PWC PWC PWC PWC PWC PWC

image-20230415 image-20230415

Requirement

-Pytorch 1.8.0  
-torchvision 0.9.0  
-python 3.8  
-opencv-python  4.5.3.56  
-tensorboardx 2.4  
-Cuda 11.3.1  
-Cudnn 11.3  

Training, Test and Visualization Process

1.Semi-supervised training:
python train_C2F-SemiCD.py --epoch 2 --batchsize 16 --gpu_id '1' --data_name 'WHU' --train_ratio 0.05 --model_name 'SemiModel_noema04'

2.Fully supervised training:
python train_C2FNet.py --epoch 2 --batchsize 16 --gpu_id '1' --data_name 'WHU' --train_ratio 0.05 --model_name 'SemiModel_noema04'

3.Ablation experiment training:
python train_C2F-SemiCD_Ablation.py --epoch 2 --batchsize 16 --gpu_id '1' --data_name 'WHU' --train_ratio 0.05 --model_name 'SemiModel_noema04'

1.Semi-supervised testing:
python test_C2F-SemiCD.py --gpu_id '2' --data_name 'WHU' --model_name 'SemiModel_noema04'

2.Fully supervised testing:
python test_C2FNet.py --gpu_id '2' --data_name 'WHU' --model_name 'SemiModel_noema04'

3.Ablation experiments test:
python test_Ablation.py --gpu_id '2' --data_name 'WHU' --model_name 'SemiModel_noema04'

4.Feature visualization:
python test_visualisation.py --gpu_id '2' --data_name 'WHU' --model_name 'SemiModel_noema04'

Test our trained model result

You can directly test our model by our provided training weights in out/. And make sure the weight name is right. Of course, for different methods and datasets, the Dataset mean and std setting is different.

path = opt.weight_dir+'final_epoch99.pt'
parser.add_argument('--save_path', type=str, default='./output/C2F-SemiCD/WHU-5/')  # Semi-supervised models save paths!!
parser.add_argument('--save_path', type=str, default='./output/C2FNet/WHU-5/')  # Fully supervised models save paths!!

Dataset Download

LEVIR-CD:https://justchenhao.github.io/LEVIR/

WHU-CD:http://gpcv.whu.edu.cn/data/building_dataset.html ,our paper split in Baidu Disk,pwd:6969

SYSU-CD: Our paper split in Baidu Disk,pwd:2023

S2Looking-CD: Our paper split in Baidu Disk,pwd:2023

CDD-CD: Our split in Baidu Disk,pwd:2023

DSIFN-CD: Our split in Baidu Disk,pwd:2023

Note: Please crop the LEVIR dataset to a slice of 256×256 before training with it. image-20230415 image-20230415 image-20230415

And also we provide all test results of our C2F-SemiCD and C2FNet in the output!!!! Download in output or Baidu Disk,pwd:2023 😋😋😋

Dataset Path Setting

 LEVIR-CD or WHU-CD  or GoogleGZ-CD
     |—train  
          |   |—A  
          |   |—B  
          |   |—label  
     |—val  
          |   |—A  
          |   |—B  
          |   |—label  
     |—test  
          |   |—A  
          |   |—B  
          |   |—label

Where A contains images of the first temporal image, B contains images of the second temporal images, and the label contains ground truth maps.

Quantization accuracy

image-20230415 image-20230415 image-20230415 image-20230415 image-20230415

Citation

If you use this code for your research, please cite our papers.

@ARTICLE{10445496,
  author={Han, Chengxi and Wu, Chen and Hu, Meiqi and Li, Jiepan and Chen, Hongruixuan},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={C2F-SemiCD: A Coarse-to-Fine Semi-Supervised Change Detection Method Based on Consistency Regularization in High-Resolution Remote Sensing Images}, 
  year={2024},
  volume={62},
  number={},
  pages={1-21},
  keywords={Feature extraction;Training;Remote sensing;Decoding;Semisupervised learning;Data models;Predictive models;Attention mechanism;deep learning;high-resolution remote sensing images;semi-supervised change detection (CD)},
  doi={10.1109/TGRS.2024.3370568}}

Acknowledgments

Thanks for my co-authors Jiepan Li,Haonan Guo, Thanks for their great work!!

Reference

[1] Han, C., Wu, C., Hu, M., Li, J. and Chen, H., 2024. “C2F-SemiCD and C2FNet: A Coarse-to-Fine Semi-Supervised Change Detection Method Based on Consistency Regularization in High-Resolution Remote-Sensing Images,” . IEEE Transactions on Geoscience and Remote Sensing.

[2] C. HAN, C. WU, H. GUO, M. HU, AND H. CHEN, “HANet: A hierarchical attention network for change detection with bi-temporal very-high-resolution remote sensing images,” IEEE J. SEL. TOP. APPL.EARTH OBS. REMOTE SENS., PP. 1–17, 2023, DOI: 10.1109/JSTARS.2023.3264802.

[3] Han, C., Wu, C., Guo, H., Hu, M., Li, J. and Chen, H., 2023. “CGNet: Change guiding network: Incorporating change prior to guide change detection in remote sensing imagery,” . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]Han, C., Wu, C. and Du, B., 2023, HCGMNET: A Hierarchical Change Guiding Map Network For Change Detection, July. In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium (pp. 5511-5514). IEEE.

(Don't hesitate to tell me about the latest progress and useful methods in the CD field, I will spare no effort to thank you. Good luck to you guys, I wish we can be the best friend in the CD field.)

Releases

No releases published

Packages

No packages published

Languages