-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
105 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
|
||
from qgs.params.params import QgParams | ||
from qgs.integrators.integrator import RungeKuttaIntegrator, RungeKuttaTglsIntegrator | ||
from qgs.functions.tendencies import create_tendencies | ||
|
||
import unittest | ||
import numpy as np | ||
|
||
real_eps = 1.e-3 | ||
|
||
|
||
class TestTlAd(unittest.TestCase): | ||
|
||
# Model parameters instantiation with some non-default specs | ||
model_parameters = QgParams({'phi0_npi': np.deg2rad(50.) / np.pi, 'hd': 0.3}) | ||
# Mode truncation at the wavenumber 2 in both x and y spatial coordinate | ||
model_parameters.set_atmospheric_channel_fourier_modes(2, 2) | ||
|
||
# Changing (increasing) the orography depth and the meridional temperature gradient | ||
model_parameters.ground_params.set_orography(0.4, 1) | ||
model_parameters.atemperature_params.set_thetas(0.2, 0) | ||
|
||
f, Df = create_tendencies(model_parameters) | ||
|
||
integrator = RungeKuttaIntegrator() | ||
integrator.set_func(f) | ||
|
||
ic = np.random.rand(model_parameters.ndim) * 0.01 | ||
integrator.integrate(0., 200000., 0.1, ic=ic, write_steps=0) | ||
_, ic = integrator.get_trajectories() | ||
|
||
tgls_integrator = RungeKuttaTglsIntegrator() | ||
tgls_integrator.set_func(f, Df) | ||
|
||
def test_taylor(self): | ||
|
||
for n in range(0, 7): | ||
|
||
y0 = self.ic | ||
dy = np.full_like(y0, 2. ** (-n)/np.sqrt(float(self.model_parameters.ndim))) | ||
y0prime = y0 + dy | ||
self.integrator.integrate(0., 0.1, 0.1, ic=y0, write_steps=0) | ||
_, y1 = self.integrator.get_trajectories() | ||
self.integrator.integrate(0., 0.1, 0.1, ic=y0prime, write_steps=0) | ||
_, y1prime = self.integrator.get_trajectories() | ||
|
||
dy1 = y1prime - y1 | ||
|
||
self.tgls_integrator.integrate(0., 0.1, dt=0.1, write_steps=0, ic=y0, tg_ic=dy) | ||
_, _, dy1_tl = self.tgls_integrator.get_trajectories() | ||
|
||
print("Resulting difference in trajectory: (epsilon ~ 2^-", n, "= ", dy[0], ")") | ||
print("diff: ", np.dot(dy1, dy1)) | ||
print("tl: ", np.dot(dy1_tl, dy1_tl)) | ||
print("ratio: ", np.dot(dy1, dy1)/np.dot(dy1_tl, dy1_tl)) | ||
self.assertTrue(self.close_match(np.dot(dy1, dy1)/np.dot(dy1_tl, dy1_tl), 1., dy[0]/10)) | ||
|
||
def test_adjoint_identity(self): | ||
|
||
y0 = self.ic | ||
for i in range(100): | ||
dy = np.random.randn(self.model_parameters.ndim) | ||
dy_bis = np.random.randn(self.model_parameters.ndim) | ||
|
||
# Calculate M(TL).x in dy1_tl | ||
self.tgls_integrator.integrate(0., 0.1, dt=0.1, write_steps=0, ic=y0, tg_ic=dy) | ||
_, _, dy1_tl = self.tgls_integrator.get_trajectories() | ||
|
||
# Calculate M(AD).x in dy1_ad | ||
self.tgls_integrator.integrate(0., 0.1, dt=0.1, write_steps=0, ic=y0, tg_ic=dy, adjoint=True) | ||
_, _, dy1_ad = self.tgls_integrator.get_trajectories() | ||
|
||
# Calculate M(AD).x in dy1_ad | ||
self.tgls_integrator.integrate(0., 0.1, dt=0.1, write_steps=0, ic=y0, tg_ic=dy_bis) | ||
_, _, dy1_bis_tl = self.tgls_integrator.get_trajectories() | ||
|
||
# Calculate M(AD).y in dy1_bis_ad | ||
self.tgls_integrator.integrate(0., 0.1, dt=0.1, write_steps=0, ic=y0, tg_ic=dy_bis, adjoint=True) | ||
_, _, dy1_bis_ad = self.tgls_integrator.get_trajectories() | ||
|
||
# Calculate norm < M(TL).x, y > | ||
norm1 = np.dot(dy1_tl, dy_bis) | ||
# Calculate norm < x, M(AD).y > | ||
norm2 = np.dot(dy, dy1_bis_ad) | ||
|
||
print("<M(TL).x,y> = ", norm1) | ||
print("<x,M(AD).y> = ", norm2) | ||
print("Ratio = ", norm1 / norm2) | ||
self.assertTrue(self.close_match(norm1, norm2)) | ||
|
||
# Calculate norm <M(TL).y,x> | ||
norm1 = np.dot(dy1_bis_tl,dy) | ||
# Calculate norm <y,M(AD).x> | ||
norm2 = np.dot(dy_bis,dy1_ad) | ||
|
||
print("<M(TL).y,x> = ", norm1) | ||
print("<y,M(AD).x> = ", norm2) | ||
print("Ratio = ", norm1 / norm2) | ||
self.assertTrue(self.close_match(norm1, norm2)) | ||
|
||
@staticmethod | ||
def close_match(v1, v2, eps=real_eps): | ||
return abs(v1 - v2) < eps |