Skip to content

Commit

Permalink
Added experimental results evaluated on the 100M dataset along with f…
Browse files Browse the repository at this point in the history
…igures
  • Loading branch information
ProchazkaDavid committed Aug 5, 2024
1 parent 7866f2f commit 22910c7
Show file tree
Hide file tree
Showing 5 changed files with 181 additions and 0 deletions.
4 changes: 4 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -82,3 +82,7 @@ python3 eval.py --results result res.csv
# Show the results
cat res.csv
```

## Results and Figures

The results of our experiments on the 100M dataset are stored in [`figures/res.csv`](./figures/res.csv). The accompanying plots ([The impact of the number of visited buckets on average recall](figures/nprobe-recall.pdf) and [The impact of the number of visited buckets on the search time](figures/nprobe-querytime.pdf)) were generated using [`figures/plot.py`](./figures/plot.py). To reproduce the plots, install the `seaborn`, `pandas` and `matplotlib` libraries and run the file.
Binary file added figures/nprobe-querytime.pdf
Binary file not shown.
Binary file added figures/nprobe-recall.pdf
Binary file not shown.
98 changes: 98 additions & 0 deletions figures/plot.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from matplotlib.axes import Axes

sns.set(font_scale=1.3, style='whitegrid')

# Load data
results = pd.read_csv('res.csv')

# Extract parameters from each df
parameters = {
't1': r't1-100M-epochs=(?P<epochs>.*)-lr=(?P<lr>.*)-sample=(?P<sample_size>.*)-alpha=(?P<alpha>.*)-chunk_size=(?P<chunk_size>.*)-nprobe=(?P<nprobe>.*)', # noqa: E501
't2': r't2-100M-epochs=(?P<epochs>.*)-lr=(?P<lr>.*)-sample=(?P<sample_size>.*)-alpha=(?P<alpha>.*)-chunk_size=(?P<chunk_size>.*)-ncandidates=(?P<ncandidates>.*)-reduced_dim=(?P<reduced_dim>.*)-nprobe=(?P<nprobe>.*)', # noqa: E501
't3': r't3-100M-epochs=(?P<epochs>.*)-lr=(?P<lr>.*)-sample=(?P<sample_size>.*)-alpha=(?P<alpha>.*)-chunk_size=(?P<chunk_size>.*)-reduced_dim=(?P<reduced_dim>.*)-nprobe=(?P<nprobe>.*)', # noqa: E501
}

tasks = {task: results[results.params.str.startswith(task)] for task in ['t1', 't2', 't3']}
parsed = {task: pd.concat([df, df['params'].str.extract(parameters[task], expand=True)], axis=1) for task, df in tasks.items()}

# Convert nprobe to integer and recall to float
for df in parsed.values():
df['nprobe'] = df['nprobe'].astype(int)
df['recall'] = df['recall'].astype(float)

# Filter out data points beyond 30 nprobe in Task 2
parsed['t2'] = parsed['t2'][parsed['t2'].nprobe <= 30] # noqa: PLR2004

# Add task column to each df and concatenate into combined_df
combined_df = pd.concat(
[
parsed['t1'].assign(task='Task 1'),
parsed['t2'].assign(task='Task 2'),
parsed['t3'].assign(task='Task 3'),
],
)

# Swap colors for Task 2 and 3
color_palette = sns.color_palette()[:3]
color_palette[1], color_palette[2] = color_palette[2], color_palette[1]


def plot_curve(df: pd.DataFrame, x: str, y: str, hue: str) -> Axes:
"""Plot a line chart with the specified parameters.
Args:
----
df (pd.DataFrame): The data to plot.
x (str): The column name for the x-axis.
y (str): The column name for the y-axis.
hue (str): The column name for the hue (color).
Returns:
-------
plt.Axes: The axis object of the plotted figure.
"""
return sns.lineplot(
data=df,
x=x,
y=y,
hue=hue,
markers=True,
palette=color_palette,
style=hue,
dashes=False,
)


def plot_recall() -> None:
"""Plot a line chart with recall against the number of visited buckets."""
try:
plot = plot_curve(combined_df, 'nprobe', 'recall', 'task')
plot.set(xlabel='Number of visited buckets', ylabel='Average recall')
plot.get_legend().set_title('')
plt.ylim([None, 1])
plt.savefig('nprobe-recall.pdf')
plt.show()
except Exception as e: # noqa: BLE001
print(f'An error occurred: {e}')


def plot_querytime() -> None:
"""Plot a line chart with query time against the number of visited buckets."""
try:
plot = plot_curve(combined_df, 'nprobe', 'querytime', 'task')
plot.set(xlabel='Number of visited buckets', ylabel='Search time (s) [log]')
plot.get_legend().set_title('')
plt.yscale('log')
plt.ylim([None, 10_000])
plt.savefig('nprobe-querytime.pdf')
plt.show()
except Exception as e: # noqa: BLE001
print(f'An error occurred: {e}')


plot_recall()
plot_querytime()
79 changes: 79 additions & 0 deletions figures/res.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
size,algo,modelingtime,encdatabasetime,encqueriestime,buildtime,querytime,params,recall
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,152.13499546051025,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=29,0.5680666666666667
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,131.90776419639587,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=25,0.5669033333333333
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,158.44632363319397,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=30,0.56834
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,142.84322047233582,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=27,0.5674566666666667
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,56.109678506851196,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=10,0.5540566666666666
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,65.78924822807312,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=12,0.5575633333333333
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,112.55158758163452,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=21,0.56517
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,39.882367849349976,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=7,0.54526
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,45.464576721191406,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=8,0.5489366666666666
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,150.07946109771729,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=28,0.56772
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,121.47694110870361,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=23,0.5661966666666667
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,24.092405796051025,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=4,0.5225033333333333
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,51.97245717048645,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=9,0.5520966666666667
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,100.88478302955627,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=19,0.56407
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,97.19172644615173,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=18,0.5634266666666666
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,86.61933255195618,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=16,0.5619233333333333
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,19.547008752822876,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=3,0.5053333333333333
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,127.79412651062012,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=24,0.56655
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,71.40370917320251,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=13,0.55868
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,34.89189863204956,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=6,0.54014
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,116.1973512172699,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=22,0.56573
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,135.8607964515686,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=26,0.5671566666666666
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,107.67316246032715,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=20,0.56468
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,29.62373685836792,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=5,0.53316
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,82.96114206314087,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=15,0.56089
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,77.12411212921143,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=14,0.5599566666666667
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,8.19430422782898,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=1,0.39463
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,13.693719387054443,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=2,0.47387666666666667
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,93.3119044303894,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=17,0.5627433333333334
100M,lmi,994.4343802928925,497.64489364624023,0.0930643081665039,7870.06959104538,59.67418956756592,t3-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=500000-reduced_dim=240-nprobe=11,0.5559133333333334
100M,lmi,0.0,0.0,0.0,5710.596895456314,283.96356081962585,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=22,0.9495666666666667
100M,lmi,0.0,0.0,0.0,5710.596895456314,346.6636166572571,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=27,0.95738
100M,lmi,0.0,0.0,0.0,5710.596895456314,145.6396129131317,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=11,0.9132633333333333
100M,lmi,0.0,0.0,0.0,5710.596895456314,227.68983006477356,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=18,0.9406033333333333
100M,lmi,0.0,0.0,0.0,5710.596895456314,371.8410232067108,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=29,0.9598466666666666
100M,lmi,0.0,0.0,0.0,5710.596895456314,133.15862798690796,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=10,0.9061566666666667
100M,lmi,0.0,0.0,0.0,5710.596895456314,297.4207863807678,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=23,0.9513433333333333
100M,lmi,0.0,0.0,0.0,5710.596895456314,194.97013998031616,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=15,0.9319233333333333
100M,lmi,0.0,0.0,0.0,5710.596895456314,320.8554186820984,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=25,0.9546066666666667
100M,lmi,0.0,0.0,0.0,5710.596895456314,55.111796140670776,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=4,0.8130066666666667
100M,lmi,0.0,0.0,0.0,5710.596895456314,359.5786271095276,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=28,0.9586966666666666
100M,lmi,0.0,0.0,0.0,5710.596895456314,80.53370690345764,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=6,0.8609433333333333
100M,lmi,0.0,0.0,0.0,5710.596895456314,244.02712225914001,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=19,0.94313
100M,lmi,0.0,0.0,0.0,5710.596895456314,209.13957238197327,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=16,0.93532
100M,lmi,0.0,0.0,0.0,5710.596895456314,256.8267436027527,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=20,0.9454133333333333
100M,lmi,0.0,0.0,0.0,5710.596895456314,106.1542501449585,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=8,0.88848
100M,lmi,0.0,0.0,0.0,5710.596895456314,68.22478365898132,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=5,0.84147
100M,lmi,0.0,0.0,0.0,5710.596895456314,222.75624418258667,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=17,0.9381
100M,lmi,0.0,0.0,0.0,5710.596895456314,173.0790388584137,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=13,0.92369
100M,lmi,0.0,0.0,0.0,5710.596895456314,27.92229461669922,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=2,0.7011033333333333
100M,lmi,0.0,0.0,0.0,5710.596895456314,93.67398619651794,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=7,0.8769466666666667
100M,lmi,0.0,0.0,0.0,5710.596895456314,120.00030827522278,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=9,0.89874
100M,lmi,0.0,0.0,0.0,5710.596895456314,41.873026609420776,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=3,0.77312
100M,lmi,0.0,0.0,0.0,5710.596895456314,15.08191180229187,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=1,0.55071
100M,lmi,0.0,0.0,0.0,5710.596895456314,387.3378403186798,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=30,0.96112
100M,lmi,0.0,0.0,0.0,5710.596895456314,186.53311848640442,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=14,0.9280733333333333
100M,lmi,0.0,0.0,0.0,5710.596895456314,158.6046667098999,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=12,0.9189
100M,lmi,0.0,0.0,0.0,5710.596895456314,311.2867443561554,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=24,0.9531233333333333
100M,lmi,0.0,0.0,0.0,5710.596895456314,335.3595771789551,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=26,0.9560733333333333
100M,lmi,0.0,0.0,0.0,5710.596895456314,273.1569709777832,t1-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=1000000-nprobe=21,0.9476333333333333
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3254.3538331985474,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=65,0.8023033333333334
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3204.04616856575,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=20,0.79387
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3291.8611249923706,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=90,0.8030033333333333
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3269.533705472946,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=80,0.8027033333333333
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3229.849574804306,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=50,0.80141
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3217.514275789261,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=40,0.8001433333333333
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3212.7711687088013,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=25,0.7968166666666666
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3197.7034854888916,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=10,0.7786166666666666
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3266.7451610565186,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=70,0.80248
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3220.3174180984497,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=35,0.7993066666666667
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3299.613860845566,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=100,0.8030633333333334
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3239.5509357452393,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=55,0.8016866666666667
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3202.259464263916,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=15,0.7890866666666667
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3195.6686317920685,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=1,0.52225
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3245.386385679245,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=60,0.8019966666666667
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3206.003481864929,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=30,0.7984666666666667
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3186.7832729816437,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=5,0.7436533333333334
100M,lmi,650.4904084205627,515.8898944854736,0.01861119270324707,9650.519670724869,3228.1054146289825,t2-100M-epochs=15-lr=0.00098-sample=1000000-alpha=1.0-chunk_size=100000-ncandidates=1000-reduced_dim=135-nprobe=45,0.8009366666666666

0 comments on commit 22910c7

Please sign in to comment.