Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: copy initial parameters in optimize call #174

Merged
merged 8 commits into from
Nov 20, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions docs/usage/3_perform_fit.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -256,6 +256,23 @@
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As can be seen, the values of the optimized parameters in the result are again comparable to the original values we saw in {ref}`usage/3_perform_fit:3.1 Define estimator`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"optimized_parameters = result[\"parameter_values\"]\n",
"optimized_parameters"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down
33 changes: 19 additions & 14 deletions src/tensorwaves/optimizer/minuit.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
"""Minuit2 adapter to the `iminuit.Minuit` package."""

import time
from typing import Optional
from copy import deepcopy
from typing import Dict, Optional

from iminuit import Minuit

Expand All @@ -21,8 +22,10 @@ def __init__(self, callback: Optional[Callback] = None) -> None:
if callback is not None:
self.__callback = callback

def optimize(self, estimator: Estimator, initial_parameters: dict) -> dict:
parameters = initial_parameters
def optimize(
self, estimator: Estimator, initial_parameters: Dict[str, float]
) -> dict:
parameters = deepcopy(initial_parameters)

def __wrapped_function(pars: list) -> float:
for i, k in enumerate(parameters.keys()):
Expand All @@ -49,15 +52,17 @@ def __wrapped_function(pars: list) -> float:
par_states = minuit.params
f_min = minuit.fmin

results: dict = {"params": {}}
parameter_values = dict()
parameter_errors = dict()
for i, name in enumerate(parameters.keys()):
results["params"][name] = (
par_states[i].value,
par_states[i].error,
)

# return fit results
results["log_lh"] = f_min.fval
results["func_calls"] = f_min.ncalls
results["time"] = end_time - start_time
return results
par_state = par_states[i]
parameter_values[name] = par_state.value
parameter_errors[name] = par_state.error

return {
"parameter_values": parameter_values,
"parameter_errors": parameter_errors,
"log_likelihood": f_min.fval,
"function_calls": f_min.ncalls,
"execution_time": end_time - start_time,
}
11 changes: 10 additions & 1 deletion tests/conftest.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
# pylint: disable=redefined-outer-name

from copy import deepcopy

import expertsystem as es
import numpy as np
import pytest
Expand All @@ -8,6 +10,7 @@

from tensorwaves.data.generate import generate_data, generate_phsp
from tensorwaves.data.tf_phasespace import TFUniformRealNumberGenerator
from tensorwaves.estimator import UnbinnedNLL
from tensorwaves.physics.helicity_formalism.amplitude import (
IntensityBuilder,
IntensityTF,
Expand Down Expand Up @@ -57,7 +60,8 @@ def intensity(
kinematics: HelicityKinematics,
phsp_sample: np.ndarray,
) -> IntensityTF:
model = helicity_model
# https://github.com/ComPWA/tensorwaves/issues/171
model = deepcopy(helicity_model)
builder = IntensityBuilder(model.particles, kinematics, phsp_sample)
return builder.create_intensity(model)

Expand All @@ -80,6 +84,11 @@ def data_set(
return kinematics.convert(data_sample)


@pytest.fixture(scope="session")
def estimator(intensity: IntensityTF, data_set: dict) -> UnbinnedNLL:
return UnbinnedNLL(intensity, data_set)


def __create_model(formalism: str) -> AmplitudeModel:
result = es.generate_transitions(
initial_state=("J/psi(1S)", [-1, +1]),
Expand Down
41 changes: 14 additions & 27 deletions tests/optimizer/test_minuit.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,42 +4,29 @@

from tensorwaves.estimator import UnbinnedNLL
from tensorwaves.optimizer.minuit import Minuit2
from tensorwaves.physics.helicity_formalism.amplitude import IntensityTF


class TestMinuit2:
@staticmethod
def test_optimize(intensity: IntensityTF, data_set: dict):
estimator = UnbinnedNLL(intensity, data_set)
assert estimator.parameters == {
"strength_incoherent": 1.0,
"MesonRadius_J/psi(1S)": 1.0,
"MesonRadius_f(0)(500)": 1.0,
"MesonRadius_f(0)(980)": 1.0,
"Magnitude_J/psi(1S)_to_f(0)(500)_0+gamma_1;f(0)(500)_to_pi0_0+pi0_0;": 1.0,
"Phase_J/psi(1S)_to_f(0)(500)_0+gamma_1;f(0)(500)_to_pi0_0+pi0_0;": 0.0,
"Magnitude_J/psi(1S)_to_f(0)(980)_0+gamma_1;f(0)(980)_to_pi0_0+pi0_0;": 1.0,
"Phase_J/psi(1S)_to_f(0)(980)_0+gamma_1;f(0)(980)_to_pi0_0+pi0_0;": 0.0,
"Mass_J/psi(1S)": 3.0969,
"Width_J/psi(1S)": 9.29e-05,
"Mass_f(0)(500)": 0.475,
"Width_f(0)(500)": 0.55,
"Mass_f(0)(980)": 0.99,
"Width_f(0)(980)": 0.06,
}
def test_optimize(estimator: UnbinnedNLL):
free_pars = {
"Width_f(0)(500)": 0.3,
"Mass_f(0)(980)": 1,
}
optimizer = Minuit2()
result = optimizer.optimize(estimator, free_pars)
assert set(result) == {
"params",
"log_lh",
"func_calls",
"time",
"parameter_values",
"parameter_errors",
"log_likelihood",
"function_calls",
"execution_time",
}
assert set(result["params"]) == set(free_pars)
assert pytest.approx(result["log_lh"]) == -13379.223862030514
assert pytest.approx(free_pars["Width_f(0)(500)"]) == 0.559522579972911
assert pytest.approx(free_pars["Mass_f(0)(980)"]) == 0.9901984320598398
par_values = result["parameter_values"]
par_errors = result["parameter_errors"]
assert set(par_values) == set(free_pars)
assert pytest.approx(result["log_likelihood"]) == -13379.223862030514
assert pytest.approx(par_values["Width_f(0)(500)"]) == 0.55868526502471
assert pytest.approx(par_errors["Width_f(0)(500)"]) == 0.01057804923356
assert pytest.approx(par_values["Mass_f(0)(980)"]) == 0.990141023090767
assert pytest.approx(par_errors["Mass_f(0)(980)"]) == 0.000721352674347
7 changes: 5 additions & 2 deletions tests/recipe/test_amplitude_creation.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import os
from copy import deepcopy

import expertsystem.amplitude.model as es

Expand All @@ -21,7 +22,8 @@ def _generate_phsp(recipe: es.AmplitudeModel, number_of_events: int):


def test_helicity(helicity_model: es.AmplitudeModel):
model = helicity_model
# https://github.com/ComPWA/tensorwaves/issues/171
model = deepcopy(helicity_model)
kinematics = HelicityKinematics.from_model(model)
masses_is = kinematics.reaction_kinematics_info.initial_state_masses
masses_fs = kinematics.reaction_kinematics_info.final_state_masses
Expand All @@ -37,7 +39,8 @@ def test_helicity(helicity_model: es.AmplitudeModel):


def test_canonical(canonical_model: es.AmplitudeModel):
model = canonical_model
# https://github.com/ComPWA/tensorwaves/issues/171
model = deepcopy(canonical_model)
particles = model.particles
kinematics = HelicityKinematics.from_model(model)
phsp_sample = _generate_phsp(model, NUMBER_OF_PHSP_EVENTS)
Expand Down
22 changes: 22 additions & 0 deletions tests/test_estimator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
from tensorwaves.estimator import UnbinnedNLL


class TestUnbinnedNLL:
@staticmethod
def test_parameters(estimator: UnbinnedNLL):
assert estimator.parameters == {
"strength_incoherent": 1.0,
"MesonRadius_J/psi(1S)": 1.0,
"MesonRadius_f(0)(500)": 1.0,
"MesonRadius_f(0)(980)": 1.0,
"Magnitude_J/psi(1S)_to_f(0)(500)_0+gamma_1;f(0)(500)_to_pi0_0+pi0_0;": 1.0,
"Phase_J/psi(1S)_to_f(0)(500)_0+gamma_1;f(0)(500)_to_pi0_0+pi0_0;": 0.0,
"Magnitude_J/psi(1S)_to_f(0)(980)_0+gamma_1;f(0)(980)_to_pi0_0+pi0_0;": 1.0,
"Phase_J/psi(1S)_to_f(0)(980)_0+gamma_1;f(0)(980)_to_pi0_0+pi0_0;": 0.0,
"Mass_J/psi(1S)": 3.0969,
"Width_J/psi(1S)": 9.29e-05,
"Mass_f(0)(500)": 0.475,
"Width_f(0)(500)": 0.55,
"Mass_f(0)(980)": 0.99,
"Width_f(0)(980)": 0.06,
}