-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
First pass at a vbi_reproject function
- Loading branch information
Showing
2 changed files
with
118 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
""" | ||
Helper functions for stitching (VBI) frames. | ||
""" | ||
|
||
import copy | ||
from typing import Callable | ||
|
||
import numpy as np | ||
import reproject | ||
import reproject.mosaicking | ||
import tqdm | ||
|
||
import astropy.units as u | ||
from astropy.table import Table | ||
from gwcs import WCS | ||
from gwcs import coordinate_frames as cf | ||
|
||
import dkist | ||
|
||
|
||
def _unify_output_frames(tds: dkist.TiledDataset, reference_tile: tuple[slice]): | ||
""" | ||
Given a `dkist.TiledDataset` return a new version where all the WCSes share | ||
the same celestial output frame. | ||
""" | ||
ref_wcs = tds[reference_tile].wcs | ||
ref_celestial_frame = [f for f in ref_wcs.output_frame.frames if isinstance(f, cf.CelestialFrame)][0] | ||
new_datasets = [] | ||
for ds in tds.flat: | ||
celestial_ind = int(np.where([isinstance(f, cf.CelestialFrame) for f in ds.wcs.output_frame.frames])[0][0]) | ||
new_frames = copy.deepcopy(ds.wcs.output_frame.frames) | ||
new_frames[celestial_ind] = ref_celestial_frame | ||
new_wcs = WCS( | ||
ds.wcs.forward_transform, | ||
input_frame=ds.wcs.input_frame, | ||
output_frame=cf.CompositeFrame(new_frames), | ||
) | ||
new_ds = dkist.Dataset( | ||
ds.data, | ||
new_wcs, | ||
meta=ds.meta, | ||
unit=ds.unit, | ||
mask=ds.mask, | ||
) | ||
new_ds._file_manager = ds._file_manager | ||
new_datasets.append(new_ds) | ||
|
||
return dkist.TiledDataset( | ||
np.array(new_datasets).reshape(tds.shape), | ||
inventory=tds.inventory, | ||
) | ||
|
||
|
||
def reproject_vbi( | ||
tds: dkist.TiledDataset, | ||
*, | ||
edge_crop: int = 50, | ||
reference_tile: tuple[slice] = np.s_[2, 0], | ||
reproject_function: Callable, | ||
roundtrip_coords: bool = False, | ||
combine_function: str = "first", | ||
shape_out: tuple[int] = None, | ||
): | ||
uni_tds = _unify_output_frames(tds, reference_tile) | ||
cropped = dkist.TiledDataset( | ||
np.array([ds[:, edge_crop:-edge_crop, edge_crop:-edge_crop] for ds in uni_tds.flat]).reshape(tds.shape), | ||
inventory=tds.inventory, | ||
) | ||
|
||
target_shape = shape_out or np.array(cropped[reference_tile][0].data.shape) * cropped.shape | ||
|
||
# We are going to use the reference_tile's WCS to create our output WCS | ||
ref_tile = tds[reference_tile] | ||
# Get the model for the celestial coords of the first image in the ref tile | ||
celestial = ref_tile.wcs.forward_transform[0].transform_at_index(0) | ||
# We are using the timesteps for the ref tile | ||
# TODO: use the mean time of all the tiles and align this with obstime in the celestial frame | ||
temporal = ref_tile.wcs.forward_transform[1] | ||
|
||
target_celestial_wcs = WCS( | ||
forward_transform=celestial, | ||
input_frame=cf.CoordinateFrame(2, ["PIXEL", "PIXEL"], (0, 1), unit=(u.pix, u.pix)), | ||
output_frame=ref_tile.wcs.output_frame.frames[0], | ||
) | ||
|
||
target_full_wcs = WCS( | ||
forward_transform=celestial & temporal, | ||
input_frame=cf.CoordinateFrame(3, ["PIXEL"]*3, (0, 1, 2), unit=[u.pix]*3), | ||
output_frame=ref_tile.wcs.output_frame, | ||
) | ||
|
||
output = [] | ||
footprint = [] | ||
for tind in tqdm.tqdm(range(uni_tds.flat[0].data.shape[0])): | ||
tiles = [ds[tind] for ds in cropped.flat] | ||
arr, fp = reproject.mosaicking.reproject_and_coadd( | ||
tiles, | ||
target_celestial_wcs, | ||
shape_out=target_shape, | ||
reproject_function=reproject_function, | ||
roundtrip_coords=roundtrip_coords, | ||
combine_function=combine_function, | ||
) | ||
output.append(arr) | ||
footprint.append(fp) | ||
|
||
output = np.array(output) | ||
footprint = np.array(footprint) | ||
|
||
new_ds = dkist.Dataset( | ||
output, | ||
wcs=target_full_wcs, | ||
unit=ref_tile.unit, | ||
# TODO: hmm? | ||
meta={"headers": Table(), "inventory": tds.inventory}, | ||
) | ||
|
||
return new_ds, footprint |