The code and dataset for our NN 2022 paper: Factorizing Time-heterogeneous Markov Transition for Temporal Recommendation(https://doi.org/10.1016/j.neunet.2022.11.032). We have implemented our methods in Pytorch.
- Python 3.8
- torch 1.10.1
You need to run the file pre_data.py
to generate the data format needed for our model.
For example:
u1:[u1,[i_1,i_2],[i_3,i_4,i_5],[i_3,i_8],[i_0,i_5],[i_1,i_2],[i_4,i_5],[i_6,i_7],[i_1,i_2]]
u2:[u2,[i_1,i_4],[i_5,i_2],[i_7,i_9],[i_10,i_21],[i_1,i_2],[i_3,i_4,i_5],[i_6,i_7],[i_1,i_2]]
...
Then you can run the file main.py
to train and test our model.
If you want to use our codes in your research, please cite:
@ARTICLE
article{wen2022factorizing,
title={Factorizing time-heterogeneous Markov transition for temporal recommendation},
author={Wen, Wen and Wang, Wencui and Hao, Zhifeng and Cai, Ruichu},
journal={Neural Networks},
year={2022},
publisher={Elsevier}
}