Skip to content

🔥 全网首发,mmdetection Co-DETR TensorRT端到端推理加速

Notifications You must be signed in to change notification settings

DataXujing/Co-DETR-TensorRT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Co-DETR TensorRT 模型端到端加速推理的C++实现

徐静

0. 环境配置说明

  • Ubuntu16.04下安装mmdetection, mmdeploy, 其依赖mmcv和mmengine
# mmdetection==3.3.0
git clone -b 3.3.0 https://github.com/open-mmlab/mmdetection
pip install -v -e .

# mmcv
pip install mmcv==2.0.0

# mmdeploy
# https://github.com/TommyZihao/MMDeploy_Tutorials  
git clone -b 1.3.1 https://github.com/open-mmlab/mmdeploy --recursive
# 编译并安装 MMDeploy(耗时大约十分钟)
python tools/scripts/build_ubuntu_x64_ort.py
  • windows TensorRT的环境
    • TensorRT 8.5
    • cuda 11.0, cudnn
    • vs2017
    • cmake version 3.22.1
    • opencv

1.Co-DETR 转ONNX

1.修改模型配置文件,关闭测试过程中的soft-nms(后面用EfficientNMS Plugin代替)

# mmdetection/projects/CO-DETR/configs/codino/co_dino_5scale_swin_l_16xb1_16e_o365tococo.py
#mmdetection/projects/CO-DETR/configs/codino/co_dino_5scale_r50_lsj_8xb2_1x_coco.py

    test_cfg=[
        # # Deferent from the DINO, we use the NMS.
        dict(
            max_per_img=300,
            # NMS can improve the mAP by 0.2.
            # nms=dict(type='soft_nms', iou_threshold=0.8)),  # 关掉test过程中的soft nms
        ),

2.修改mmdeploy中关于onnx的导出配置

# mmdeploy/configs/_base_/onnx_config.py
onnx_config = dict(
    type='onnx',
    export_params=True,
    keep_initializers_as_inputs=False,
    opset_version=11,  # opset 版本
    save_file='end2end.onnx',  #转出onnx的保存名字
    input_names=['input'],  # input的名字
    output_names=['output'],  # output的名字
    input_shape=None,
    optimize=True)
# mmdeploy/configs/mmdet/_base_/base_static.py

_base_ = ['../../_base_/onnx_config.py']

onnx_config = dict(output_names=['dets', 'labels'], input_shape=[640,640])  # static input的大小设置为640x640
codebase_config = dict(
    type='mmdet',
    task='ObjectDetection',
    model_type='end2end',
    post_processing=dict(
        score_threshold=0.05,
        confidence_threshold=0.005,  # for YOLOv3
        iou_threshold=0.5,
        max_output_boxes_per_class=200,
        pre_top_k=5000,
        keep_top_k=100,
        background_label_id=-1,
    ))

# co-dino使用了多尺度训练,这里我们将test input的尺度设为640x640,减少计算量

3.mmdeploy转onnx

python mmdeploy/tools/deploy.py \
        mmdeploy/configs/mmdet/detection/detection_onnxruntime_static.py \
        mmdetection/projects/CO-DETR/configs/codino/co_dino_5scale_swin_l_16xb1_16e_o365tococo.py \
        mmdetection/checkpoints/co_dino_5scale_swin_large_16e_o365tococo-614254c9.pth \
        mmdetection/demo/demo.jpg \
        --work-dir mmdetection/checkpoints \
        --device cpu
# 这个过程生成了end2end.onnx的,但是onnxruntime的时候或报错,报错的原因是grid_sampler算子onnxruntime和tensorrt均不支持,稍后会编译tensorrt plugin解决该伪问题

4.对onnx进行onnxsim和 fold constants

polygraphy surgeon sanitize end2end.onnx --fold-constants -o end2end_folded.onnx
python -m onnxsim end2end_folded.onnx end2end_folded_sim.onnx

注意:

# 常量折叠和simplifier涉及到的库的版本
polygraphy==0.49.0
onnxruntime-gpu==1.19.2
onnx-simplifier=0.4.36

2. Windows 下单独编译mmdeploy中仅涉及Co-DETR的TensorRT Plugin

cmake_minimum_required(VERSION 2.6)

project(mmdeploy_plugins)

add_definitions(-std=c++11)
add_definitions(-DAPI_EXPORTS)
option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}  /O2")
add_compile_definitions(WIN32_LEAN_AND_MEAN NOMINMAX)

find_package(CUDA REQUIRED)

#if(WIN32)
#enable_language(CUDA)
#endif(WIN32)

# cuda
set(cuda_inc "C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.0/include")
set(cuda_lib "C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.0/lib/x64")
include_directories(${cuda_inc})
link_directories(${cuda_lib})
#cub
set(CUB_ROOT_DIR "C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.0/include/cub")
include_directories(${CUB_ROOT_DIR})
# tensorrt
set(tensorrt_inc "D:/trt_install/TensorRT-8.5.1.7/include")
set(tensorrt_lib "D:/trt_install/TensorRT-8.5.1.7/lib")
include_directories(${tensorrt_inc})
link_directories(${tensorrt_lib})
# opencv
#include_directories("${PROJECT_SOURCE_DIR}/third_party/CV460_64/include")
#set(opencv_lib "${PROJECT_SOURCE_DIR}/third_party/CV460_64/lib/opencv_world460.lib")

# common files,来源于mmdeploy
include_directories(common)

file(GLOB grid_sampler_src ${PROJECT_SOURCE_DIR}/grid_sampler/*.cpp ${PROJECT_SOURCE_DIR}/grid_sampler/*.cu)
cuda_add_library(trtgrid_sampler SHARED ${grid_sampler_src})
#cuda_add_library(trtgrid_sampler STATIC ${grid_sampler_src})
target_link_libraries(trtgrid_sampler nvinfer cudart)


file(GLOB topk_src ${PROJECT_SOURCE_DIR}/gather_topk/*.cpp ${PROJECT_SOURCE_DIR}/gather_topk/*.cu)
cuda_add_library(trtgather_topk SHARED ${topk_src})
#cuda_add_library(trtgather_topk STATIC ${topk_src})
target_link_libraries(trtgather_topk nvinfer cudart)


if(UNIX)
    add_definitions(-O2 -pthread)
endif(UNIX)
  1. 打开vs studio 2017的终端x64 Native Tools Command ...,cd到项目的目录进行编译

2.windows下编译TensorRT Plugin

mkdir build && cd build
cmake -G ”NMake Makefiles“ ..
nmake

在build文件夹下生成了trtgrid_sampler.dlltrtgather_topk.dll,下面我们会使用trtgrid_sampler.dll的plugin 。

3.Co-DETR ONNX Graph修改和编辑

原始导出的不包含nms的graph

执行编辑onnx graph的脚本:

python co_detr_add_nms.py

模型结构变为:

4.Windows下序列化Co-DETR TensorRT engine

trtexec --onnx=end2end_foled_sim_nms.onnx --saveEngine=test_1.plan --workspace=60000 --verbose --plugins=./trtgrid_sampler.dll

5.mmdetection中Co-DETR模型前处理实现的分析和C++重写

mmdetection 3.3.0 co-dino的前处理:

  • opencv读入BGR图像

  • 等比例缩放,长边缩放到640,缩放方法bilinear

  • normalize:

        mean=[123.675, 116.28, 103.53],  # RGB
        std=[58.395, 57.12, 57.375],  #RGB
    
  • BGR2RGB

  • 短边右下角填充为0

C++实现如下:

//mmdetection3.3.0 co-detr前处理
void codetr::preprocess(cv::Mat &img, float data[]) {
	int w, h, x, y;
	float r_w = INPUT_W / (img.cols*1.0);
	float r_h = INPUT_H / (img.rows*1.0);
	if (r_h > r_w) {
		w = INPUT_W;
		h = r_w * img.rows;
	}
	else {
		w = r_h * img.cols;
		h = INPUT_H;
	}
	cv::Mat re(h, w, CV_8UC3);
	cv::resize(img, re, re.size(), 0, 0, cv::INTER_LINEAR);
	cv::Mat out(INPUT_H, INPUT_W, CV_8UC3, cv::Scalar(103, 116, 123));  //(0,0,0)像素填充
	re.copyTo(out(cv::Rect(0, 0, re.cols, re.rows)));  //右下角

	int i = 0;
	for (int row = 0; row < INPUT_H; ++row) {
		uchar* uc_pixel = out.data + row * out.step;
		for (int col = 0; col < INPUT_W; ++col) {
			data[i] = ((float)uc_pixel[2] - 123.675)/58.395;  //R
			data[i + INPUT_H * INPUT_W] = ((float)uc_pixel[1] - 116.28) / 57.12;  //G
			data[i + 2 * INPUT_H * INPUT_W] = ((float)uc_pixel[0] - 103.53)/ 57.375;  //B

			uc_pixel += 3;
			++i;
		}
	}
}

6.Co-DETR TensorRT C++实现和测试

注意C++加载自己定义的Plugin

bool didInitPlugins = initLibNvInferPlugins(nullptr, "");
void* handle_grid_sampler = LoadLibrary(L"trtgrid_sampler.dll");

TensorRT C++的推理Demo:

bus.jpg zidane.jpg

7. Linux如何编译该程序

  • 我提供了在Linux下编译Co-DETR进行端到端推理的代码,请参考linux_cc/,其中plugin为grid_sampler plugin的编译, co_detr为Co-DETR的TensorRT调用。

[!NOTE]\

  • Co-DETR TensorRT的实现,坑确实比较多,参考的网络资源基本没有
  • 我们将soft-nms算子删除,替换为TensorRT EfficientNMS Plugin
  • 我们在windows下编译了TensorRT Plugin grid_sampler

最终成功实现了Co-DETR的端到端的TensorRT 模型推理异构计算加速推理!

About

🔥 全网首发,mmdetection Co-DETR TensorRT端到端推理加速

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published