Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added convert_from_recipe script #1568

Merged
merged 15 commits into from
Oct 30, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .circleci/config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -641,6 +641,7 @@ jobs:
python3.8 src/super_gradients/train_from_recipe.py --config-name=imagenet_resnet50 batch_size=8 val_batch_size=16 epochs=1 training_hyperparams.average_best_models=False training_hyperparams.max_train_batches=100 training_hyperparams.max_valid_batches=100 multi_gpu=DDP num_gpus=4 dataset_params.train_dataset_params.root=/data/Imagenet/train dataset_params.val_dataset_params.root=/data/Imagenet/val
python3.8 src/super_gradients/train_from_recipe.py --config-name=imagenet_vit_base batch_size=8 val_batch_size=16 epochs=1 training_hyperparams.average_best_models=False training_hyperparams.max_train_batches=100 training_hyperparams.max_valid_batches=100 multi_gpu=DDP num_gpus=4 dataset_params.train_dataset_params.root=/data/Imagenet/train dataset_params.val_dataset_params.root=/data/Imagenet/val
python3.8 src/super_gradients/train_from_kd_recipe.py --config-name=imagenet_resnet50_kd batch_size=8 val_batch_size=8 epochs=1 training_hyperparams.average_best_models=False training_hyperparams.max_train_batches=100 training_hyperparams.max_valid_batches=100 multi_gpu=DDP num_gpus=4 dataset_params.train_dataset_params.root=/data/Imagenet/train dataset_params.val_dataset_params.root=/data/Imagenet/val
python3.8 src/super_gradients/convert_recipe_to_code.py cifar10_resnet.yaml train_cifar10_resnet.py && python3.8 train_cifar10_resnet.py

- run:
name: Remove new environment when failed
Expand Down
239 changes: 239 additions & 0 deletions src/super_gradients/convert_recipe_to_code.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,239 @@
"""
Entry point for converting recipe file to self-contained train.py file.

Convert a recipe YAML file to a self-contained <train.py> file that can be run with python <train.py>.
Generated file will contain all training hyperparameters from input recipe file but will be self-contained (no dependencies on original recipe).

Limitations: Converting a recipe with command-line overrides of some parameters in this recipe is not supported.

General use: python -m super_gradients.convert_recipe_to_code DESIRED_RECIPE OUTPUT_SCRIPT
Example: python -m super_gradients.convert_recipe_to_code coco2017_yolo_nas_s train_coco2017_yolo_nas_s.py

For recipe's specific instructions and details refer to the recipe's configuration file in the recipes' directory.
"""
import argparse
import collections
import os.path
import pathlib
from typing import Tuple, Mapping, Dict, Union, Optional

import hydra
import pkg_resources
from hydra.core.global_hydra import GlobalHydra
from omegaconf import DictConfig, OmegaConf, ListConfig

from super_gradients import Trainer
from super_gradients.common import MultiGPUMode
from super_gradients.common.abstractions.abstract_logger import get_logger
from super_gradients.common.environment.omegaconf_utils import register_hydra_resolvers
from super_gradients.common.environment.path_utils import normalize_path
from super_gradients.training.utils import get_param

logger = get_logger(__name__)


def try_import_black():
"""
Attempts to import black code formatter.
If black is not installed, it will attempt to install it with pip.
If installation fails, it will return None
"""
try:
import black

return black
except ImportError:
logger.info("Trying to install black using pip to enable formatting of the generated script.")
try:
import pip

pip.main(["install", "black==22.10.0"])
import black

logger.info("Black installed via pip. ")
return black
except Exception:
logger.info("Black installation failed. Formatting of the generated script will be disabled.")
return None


def recursively_walk_and_extract_hydra_targets(
cfg: DictConfig, objects: Optional[Mapping] = None, prefix: Optional[str] = None
) -> Tuple[DictConfig, Dict[str, Mapping]]:
"""
Iterates over the input config, extracts all hydra targets present in it and replace them with variable references.
Extracted hydra targets are stored in the objects dictionary (Used to generated instantiations of the objects in the generated script).

:param cfg: Input config
:param objects: Dictionary of extracted hydra targets
:param prefix: A prefix variable to track the path to the current config (Used to give variables meaningful name)
:return: A new config and the dictionary of objects that must be created in the generated script
"""
if objects is None:
objects = collections.OrderedDict()
if prefix is None:
prefix = ""

if isinstance(cfg, DictConfig):
for key, value in cfg.items():
value, objects = recursively_walk_and_extract_hydra_targets(value, objects, prefix=f"{prefix}_{key}")
cfg[key] = value

if "_target_" in cfg:
target_class = cfg["_target_"]
target_params = dict([(k, v) for k, v in cfg.items() if k != "_target_"])
object_name = f"{prefix}".replace(".", "_").lower()
objects[object_name] = (target_class, target_params)
cfg = object_name

elif isinstance(cfg, ListConfig):
for index, item in enumerate(cfg):
item, objects = recursively_walk_and_extract_hydra_targets(item, objects, prefix=f"{prefix}_{index}")
cfg[index] = item
else:
pass
return cfg, objects


def convert_recipe_to_code(config_name: Union[str, pathlib.Path], config_dir: Union[str, pathlib.Path], output_script_path: Union[str, pathlib.Path]) -> None:
"""
Convert a recipe YAML file to a self-contained <train.py> file that can be run with python <train.py>.
Generated file will contain all training hyperparameters from input recipe file but will be self-contained (no dependencies on original recipe).

Limitations: Converting a recipe with command-line overrides of some paramters in this recipe is not supported.

:param config_name: Name of the recipe file (can be with or without .yaml extension)
:param config_dir: Directory where the recipe file is located
:param output_script_path: Path to the output .py file
:return: None
"""
config_name = str(config_name)
config_dir = str(config_dir)
output_script_path = str(output_script_path)

register_hydra_resolvers()
GlobalHydra.instance().clear()
with hydra.initialize_config_dir(config_dir=normalize_path(config_dir), version_base="1.2"):
cfg = hydra.compose(config_name=config_name)

cfg = Trainer._trigger_cfg_modifying_callbacks(cfg)
OmegaConf.resolve(cfg)

device = get_param(cfg, "device")
multi_gpu = get_param(cfg, "multi_gpu")

if multi_gpu is False:
multi_gpu = MultiGPUMode.OFF
num_gpus = get_param(cfg, "num_gpus")

train_dataloader = get_param(cfg, "train_dataloader")
train_dataset_params = OmegaConf.to_container(cfg.dataset_params.train_dataset_params, resolve=True)
train_dataloader_params = OmegaConf.to_container(cfg.dataset_params.train_dataloader_params, resolve=True)

val_dataloader = get_param(cfg, "val_dataloader")
val_dataset_params = OmegaConf.to_container(cfg.dataset_params.val_dataset_params, resolve=True)
val_dataloader_params = OmegaConf.to_container(cfg.dataset_params.val_dataloader_params, resolve=True)

num_classes = cfg.arch_params.num_classes
arch_params = OmegaConf.to_container(cfg.arch_params, resolve=True)

strict_load = cfg.checkpoint_params.strict_load
if isinstance(strict_load, Mapping) and "_target_" in strict_load:
strict_load = hydra.utils.instantiate(strict_load)

training_hyperparams, hydra_instantiated_objects = recursively_walk_and_extract_hydra_targets(cfg.training_hyperparams)

checkpoint_num_classes = get_param(cfg.checkpoint_params, "checkpoint_num_classes")
content = f"""
import super_gradients
from super_gradients import init_trainer, Trainer
from super_gradients.training.utils.distributed_training_utils import setup_device
from super_gradients.training import models, dataloaders
from super_gradients.common.data_types.enum import MultiGPUMode, StrictLoad
import numpy as np

def main():
init_trainer()
setup_device(device={device}, multi_gpu="{multi_gpu}", num_gpus={num_gpus})

trainer = Trainer(experiment_name="{cfg.experiment_name}", ckpt_root_dir="{cfg.ckpt_root_dir}")

num_classes = {num_classes}
arch_params = {arch_params}

model = models.get(
model_name="{cfg.architecture}",
num_classes=num_classes,
arch_params=arch_params,
strict_load={strict_load},
pretrained_weights={cfg.checkpoint_params.pretrained_weights},
checkpoint_path={cfg.checkpoint_params.checkpoint_path},
load_backbone={cfg.checkpoint_params.load_backbone},
checkpoint_num_classes={checkpoint_num_classes},
)

train_dataloader = dataloaders.get(
name={train_dataloader},
dataset_params={train_dataset_params},
dataloader_params={train_dataloader_params},
)

val_dataloader = dataloaders.get(
name={val_dataloader},
dataset_params={val_dataset_params},
dataloader_params={val_dataloader_params},
)

"""
for name, (class_name, class_params) in hydra_instantiated_objects.items():
class_params_str = []
for k, v in class_params.items():
class_params_str.append(f"{k}={v}")
class_params_str = ",".join(class_params_str)
content += f" {name} = {class_name}({class_params_str})\n\n"

content += f"""

training_hyperparams = {training_hyperparams}

# TRAIN
result = trainer.train(
model=model,
train_loader=train_dataloader,
valid_loader=val_dataloader,
training_params=training_hyperparams,
)

print(result)

if __name__ == "__main__":
main()
"""
# Remove quotes from dict values to reference them as variables
for key in hydra_instantiated_objects.keys():
key_to_search = f"'{key}'"
key_to_replace_with = f"{key}"
content = content.replace(key_to_search, key_to_replace_with)

with open(output_script_path, "w") as f:
black = try_import_black()
if black is not None:
content = black.format_str(content, mode=black.FileMode(line_length=160))
f.write(content)


def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument("config_name", type=str, help=".yaml filename")
parser.add_argument("save_path", type=str, default=None, help="Destination path to the output .py file")
parser.add_argument("--config_dir", type=str, default=pkg_resources.resource_filename("super_gradients.recipes", ""), help="The config directory path")
args = parser.parse_args()

save_path = args.save_path or os.path.splitext(os.path.basename(args.config_name))[0] + ".py"
logger.info(f"Saving recipe script to {save_path}")

convert_recipe_to_code(args.config_name, args.config_dir, save_path)


if __name__ == "__main__":
main()
2 changes: 2 additions & 0 deletions tests/deci_core_unit_test_suite_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
TestMixedPrecisionDisabled,
)
from tests.end_to_end_tests import TestTrainer
from tests.unit_tests.test_convert_recipe_to_code import TestConvertRecipeToCode
from tests.unit_tests.detection_utils_test import TestDetectionUtils
from tests.unit_tests.detection_dataset_test import DetectionDatasetTest, TestParseYoloLabelFile
from tests.unit_tests.export_detection_model_test import TestDetectionModelExport
Expand Down Expand Up @@ -166,6 +167,7 @@ def _add_modules_to_unit_tests_suite(self):
self.unit_tests_suite.addTest(self.test_loader.loadTestsFromModule(PoseEstimationSampleTest))
self.unit_tests_suite.addTest(self.test_loader.loadTestsFromModule(TestMixedPrecisionDisabled))
self.unit_tests_suite.addTest(self.test_loader.loadTestsFromModule(DynamicModelTests))
self.unit_tests_suite.addTest(self.test_loader.loadTestsFromModule(TestConvertRecipeToCode))

def _add_modules_to_end_to_end_tests_suite(self):
"""
Expand Down
100 changes: 100 additions & 0 deletions tests/unit_tests/test_convert_recipe_to_code.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
import ast
import tempfile

import pkg_resources
import unittest

from super_gradients.convert_recipe_to_code import convert_recipe_to_code
from pathlib import Path


class TestConvertRecipeToCode(unittest.TestCase):
def setUp(self) -> None:
self.recipes_dir: Path = Path(pkg_resources.resource_filename("super_gradients.recipes", ""))
self.recipes_that_should_work = [
"cifar10_resnet.yaml",
"cityscapes_al_ddrnet.yaml",
"cityscapes_ddrnet.yaml",
"cityscapes_pplite_seg50.yaml",
"cityscapes_pplite_seg75.yaml",
"cityscapes_regseg48.yaml",
"cityscapes_segformer_b0.yaml",
"cityscapes_segformer_b1.yaml",
"cityscapes_segformer_b2.yaml",
"cityscapes_segformer_b3.yaml",
"cityscapes_segformer_b4.yaml",
"cityscapes_segformer_b5.yaml",
"cityscapes_stdc_base.yaml",
"cityscapes_stdc_seg50.yaml",
"cityscapes_stdc_seg75.yaml",
"coco2017_pose_dekr_rescoring.yaml",
"coco2017_pose_dekr_w32_no_dc.yaml",
"coco2017_ppyoloe_l.yaml",
"coco2017_ppyoloe_m.yaml",
"coco2017_ppyoloe_s.yaml",
"coco2017_ppyoloe_x.yaml",
"coco2017_ssd_lite_mobilenet_v2.yaml",
"coco2017_yolo_nas_s.yaml",
"coco2017_yolox.yaml",
"coco_segmentation_shelfnet_lw.yaml",
"imagenet_efficientnet.yaml",
"imagenet_mobilenetv2.yaml",
"imagenet_mobilenetv3_large.yaml",
"imagenet_mobilenetv3_small.yaml",
"imagenet_regnetY.yaml",
"imagenet_repvgg.yaml",
"imagenet_resnet50.yaml",
"imagenet_vit_base.yaml",
"imagenet_vit_large.yaml",
"supervisely_unet.yaml",
"user_recipe_mnist_as_external_dataset_example.yaml",
"user_recipe_mnist_example.yaml",
]

self.recipes_that_does_not_work = [
"cityscapes_kd_base.yaml", # KD recipe not supported
"imagenet_resnet50_kd.yaml", # KD recipe not supported
"imagenet_mobilenetv3_base.yaml", # Base recipe (not complete) for other MobileNetV3 recipes
"cityscapes_segformer.yaml", # Base recipe (not complete) for other SegFormer recipes
"roboflow_ppyoloe.yaml", # Require explicit command line arguments
"roboflow_yolo_nas_m.yaml", # Require explicit command line arguments
"roboflow_yolo_nas_s.yaml", # Require explicit command line arguments
"roboflow_yolo_nas_s_qat.yaml", # Require explicit command line arguments
"roboflow_yolox.yaml", # Require explicit command line arguments
"variable_setup.yaml", # Not a recipe
"script_generate_rescoring_data_dekr_coco2017.yaml", # Not a recipe
]

def test_all_recipes_are_tested(self):
present_recipes = set(recipe.name for recipe in self.recipes_dir.glob("*.yaml"))
known_recipes = set(self.recipes_that_should_work + self.recipes_that_does_not_work)
new_recipes = present_recipes - known_recipes
removed_recipes = known_recipes - present_recipes
if len(new_recipes):
self.fail(f"New recipes found: {new_recipes}. Please add them to the list of recipes to test.")
if len(removed_recipes):
self.fail(f"Removed recipes found: {removed_recipes}. Please remove them from the list of recipes to test.")

def test_convert_recipes_that_should_work(self):
with tempfile.TemporaryDirectory() as temp_dir:
for recipe in self.recipes_that_should_work:
with self.subTest(recipe=recipe):
output_script_path = Path(temp_dir) / Path(recipe).name
convert_recipe_to_code(recipe, self.recipes_dir, output_script_path)
src = output_script_path.read_text()
try:
ast.parse(src, feature_version=(3, 9))
except SyntaxError as e:
self.fail(f"Recipe {recipe} failed to convert to python script: {e}")

def test_convert_recipes_that_are_expected_to_fail(self):
with tempfile.TemporaryDirectory() as temp_dir:
for recipe in self.recipes_that_does_not_work:
with self.subTest(recipe=recipe):
output_script_path = Path(temp_dir) / Path(recipe).name
with self.assertRaises(Exception):
convert_recipe_to_code(recipe, self.recipes_dir, output_script_path)


if __name__ == "__main__":
unittest.main()