-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTout
52 lines (40 loc) · 1.6 KB
/
Tout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
Function Tout(Tin, Tsoil, mFlow, L, z, P, eps, D1, D2, D3, D4)
' Calculates the temperature drop through a pipe segment
' to find outlet temperature at the end of the pipe
' by Tol,Hakan Ibrahim from the research carried out in SALK GeoWatt project at VITO NV and at TU/e
' INPUTS
' Tin : The temperature at the pipe inlet [°C]
' Tsoil : Undisturbed soil temperature [°C]
' mFlow : Mass flow rate [kg/s]
' L : Pipe length [m]
' z : Pipe depth [m]
' P : Static Pressure (10,6 - supply, return) [bar]
' D1-4 : Diameters for pipe,insulation,outer casing, and outside [m] or [mm]
' THERMAL PROPERTIES
' Water
rho = rhoL_T(Tin) '[kg/m3]
Cp = CpL_T(Tin) * 1000 '[J/kgK]
TCw = -0.00000967398 * Tin ^ 2 + 0.00215246 * Tin + 0.55748 '[W/mK]
vis = my_pT(P, Tin)
' Pipe Layers
TCp = 51 '[W/mK]
TCi = 0.027 '[W/mK]
TCc = 0.43 '[W/mK]
TCs = 1.6 '[W/mK] - Soil
' THERMAL RESISTANCES
' Pipe Layers
Rp = Log(D2 / D1) / (2 * PiNumber() * L * TCp)
Ri = Log(D3 / D2) / (2 * PiNumber() * L * TCi)
Rc = Log(D4 / D3) / (2 * PiNumber() * L * TCc)
' Soil
Rs = Log((z / (D4 / 2)) + ((z / (D4 / 2)) ^ 2 - 1) ^ 0.5) / (2 * PiNumber() * L * TCs)
' Inner Flow
f = f_Clamond(Reynolds(mFlow, D1, Tin, P), eps / D1)
Pr = Cp * vis / TCw
Nu = ((f / 8) * (Re - 1000) * Pr) / (1 + 12.7 * (f / 8) ^ 0.5 * (Pr ^ (2 / 3) - 1))
hf = Nu * TCw / (D1 / 1000)
Af = PiNumber() * D1 * L
Rf = 1 / (hf * Af)
Rt = Rf + Rp + Ri + Rc + Rs
Tout = Tsoil + (Tin - Tsoil) * Exp(-(1 / (Rt * mFlow * Cp)))
End Function