This project aims to reproduce the Zero Shot MBPP (Massive Bank of Problems in Programming) results as described in the "Code Llama: Open Foundation Models for Code" paper. We utilize the powerful capabilities of the Code Llama model to explore innovative approaches in code generation and comprehension.
Before running the code, ensure you have a Lorax Predibase server operational. Follow the steps below to set up the server environment suitable for your needs.
docker run --runtime=nvidia -e PORT="8080" -p 8080:8080 -v $volume:/data ghcr.io/predibase/lorax:latest --model-id codellama/CodeLlama-7b-Instruct-hf --max-input-length 512 --max-batch-prefill-tokens 1024 --quantize bitsandbytes-nf4
docker run --runtime=nvidia -e PORT="8080" -p 8080:8080 -v $volume:/data ghcr.io/predibase/lorax:latest --model-id codellama/CodeLlama-13b-Instruct-hf --max-input-length 512 --max-batch-prefill-tokens 1024
To validate the setup and ensure everything is working as expected, run the unit tests using the following command:
pytest
Running Pass1 Script To execute the Pass1 script, use the following command. This will also log the output to a file for further analysis.
python3 async_main_pass1.py | tee 7B_np4_pass1.log
Running Pass10 Script Similarly, to run the Pass10 script, use the following command:
python3 async_main_pass10.py | tee 7B_np4_pass10.log
This project is maintained by Michael Drob. For inquiries or contributions, please reach out through .